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Abstract

Standard wildfire smoke detection systems detect fires using remote cam-

eras located at observation posts. Images from the cameras are analyzed

using standard computer vision techniques, and human intervention is re-

quired only in situations in which the system raises an alarm. The number

of alarms depends largely on manually set detection sensitivity parameters.

One of the primary drawbacks of this approach is the false alarm rate, which

impairs the usability of the system. In this paper, we present a novel ap-

proach using GIS and augmented reality to include the spatial and fire risk

data of the observed scene. This information is used to improve the reliability

of the existing systems through automatic parameter adjustment. For eval-

uation, three smoke detection methods were improved using this approach

and compared to the standard versions. The results demonstrated significant

improvement in different smoke detection aspects, including detection range,

rate of correct detections and decrease in the false alarm rate.
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analysis

1. Introduction

Throughout history, we have witnessed the devastating power of wildfires.

Once a wildfire has expanded, it is almost impossible to control and extremely

difficult to extinguish. Early identification of wildfires and a quick reaction

are the primary factors required to prevent material damage and save human

lives.

Experience has indicated that in most cases of wildfires, smoke is visible

long before the flame. This phenomenon is particularly evident in environ-

ments with dense vegetation. In forests, a flame is not visible until it catches

the crowns, meaning that the wildfire is already expanding rapidly. Detect-

ing smoke is therefore one of the most widespread approaches to wildfire

detection.

Traditional smoke detection is based on observers who monitor the sur-

rounding environment. Observation posts, located in elevated areas with

good visibility, provide visual coverage of most of the surrounding terrain.

Advances in technology have led to camera-based surveillance, allowing the

observer to control multiple observation posts from a single remote location.

This approach has reduced the number of required observers. However, the

human factor is still a main problem in remote surveillance. The concentra-

tion required to simultaneously monitor several locations is significant, and

human attention can decrease over time.

Automatic fire detection systems have been developed to further reduce

the number of people and the amount of effort required to provide reliable
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smoke detection [1–8]. These systems use different computer vision algo-

rithms, consisting of several detection phases. Most of the systems use

motion detection as the first phase of the detection process to reduce the

amount of data for analysis. The detected regions are then further analyzed

based on visual features, such as color, texture and shape. In another of

the general detection phases, the dynamic behavior is analyzed to reliably

discriminate between smoke regions and visually similar phenomena. Based

on these analyses, the system determines whether to employ the alarm in the

given situation.

However, the reliability of detection systems is still not adequate for

highly critical applications, such as the smoke detection. It is important to

emphasize that smoke detection systems are not fully automatic and rather

considered to be an aid to the observers. Human intervention is required

only in situations where the system raises an alarm.

The number of alarms depends largely on the detection sensitivity. Most

of the existing smoke detection methods provide detection parameters that

can be manually edited to change the smoke detection sensitivity. High

sensitivity may result in a large number of false alarms, while a low sensitivity

may result in failing to spot a fire.

To reduce the number of false alarms and simultaneously increase the

number of correct detections, we propose the automatic adjustment of the

smoke detection parameters. Our solution is based on integrating computer

vision techniques with advanced augmented reality and GIS technologies.

We have developed a novel system based on augmented reality used to cal-

culate geographic coordinates and real-world distances of each pixel in the
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input image. A geographic information system is then used to modify these

data into appropriate information used to adaptively estimate the appropri-

ate sensitivity parameters for the smoke detection. Although some existing

systems use different types of synthetic data to improve detection quality

[9], the main advantage of our system is the ability to calculate and apply

synthetic data, such as the real-world dimensions of visible objects in the

image and fire risk indexes, on a pixel level with high accuracy. We also

propose modifying the input image by using the calculated data to achieve

higher-quality smoke detection.

Note that our intention was not to develop a new smoke detection method.

Rather, we propose improving smoke detection in general, by integrating sev-

eral methodologies. These methodologies work together to provide reliable

smoke detection, characterized by a smaller number of false alarms and ex-

tended detection range.

A detailed study of existing smoke detection methods was carried out

to investigate the most common phases in smoke detection methods. We

thoroughly studied each phase and presented ideas for improvements (in

Sect. 2). In Sect. 3, we describe the development of the augmented reality

system used to calculate the geographic coordinates and real-world distances

of each pixel in the input image. The data preparation using GIS and the

actual adaptive estimation of the detection parameters are described in Sect.

4 and 5, respectively. We evaluated the proposed improvement using video

sequences gathered in the Mediterranean area of Croatia. Several methods

were improved by the proposed model and compared to the standard versions

(in Sect. 6).
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2. Overview of Visual Smoke Detection

There are many approaches to detecting smoke using computer vision.

Most of the smoke detection systems simultaneously use several approaches

to improve performance and reliability. Several phases of smoke detection

are common to most smoke detection systems; therefore, we will cover them

in the following subsections. We will also provide ideas and propose improve-

ments based on the integration of computer vision, augmented reality and

GIS.

2.1. Motion Detection

Motion detection is a common phase in most smoke detection systems.

This phase is used as a filter for subsequent, computationally demanding,

phases such that only the detected regions are used for further analysis.

There are many motion detection approaches used in smoke detection sys-

tems, such as adaptive background estimation [2, 10–13], block mean differ-

ence [14–16] or motion history image [17, 18]. One parameter is common to

all these approaches: the sensitivity of the motion detection.

Motion detection sensitivity determines the ratio between the reliability

and usability of the system. High motion detection sensitivity may result in

a large number of false alarms, while low sensitivity may result in a missed

detection. For most of the existing methods, motion detection sensitivity is

applied to the entire image, as one global parameter.

An important factor in determining the level of sensitivity is the dynamics

of the observed location. The overall dynamics of the image are low when the

camera is located far away from the region of interest, and increases inversely
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proportional to the distance. This is because the local motion of the objects

in the scene (e.g., tree branches moving in the wind) is accentuated when

these objects are close to the camera.

As mentioned in the previous section, we propose a system that can es-

timate the geographic coordinates and real-world distances of the observed

objects in the image. These data can then be used for the automatic adap-

tation of motion detection sensitivity. These parameters do not have a single

value, but rather different values for different parts of the image. More specif-

ically, a distant movement requires high motion sensitivity, while a movement

in the immediate vicinity of the camera requires low sensitivity.

2.2. Region Analysis

Candidate region analysis is another phase common to the majority of

smoke detection systems. Regions identified during the motion detection

phase are further analyzed based on their color, texture, shape and size.

Smoke is usually light to dark gray, so most of the standard methods use

certain chromatic limitations. There are different approaches to chromatic

analysis [19–21] using various color spaces. Additionally, some systems use

the texture of the candidate region to improve the reliability of the system

[22–24]. Different texture features could be obtained by using various ap-

proaches, such as a gray-level co-occurrence matrix (GLCM) [25] or wavelet

analysis [26–28]. Another aspect of region analysis is examining the shape

of the region. The authors in [2] show that smoke regions generally have a

convex contour and an irregular shape with many aberrant lines. Most of the

methods calculate the shape disorder parameter for the detected region and

compare it to the reference values [19, 29], or use it as an input parameter
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for a neural network [30].

Methods based on the color, texture and shape properties cannot be sig-

nificantly improved by using augmented reality and GIS. However, the per-

ceived size of the detected region is directly dependent on the relative distance

from the camera. The majority of the existing methods use a threshold, de-

fined by the number of pixels, as the minimum size of the detected region.

In our approach, the geographic location of the observed region is known, so

GIS could be used to estimate its real-world size. We introduce a new thresh-

old based on the estimated size expressed in a standard unit of measurement,

such as meters.

2.3. Dynamics Analysis

An analysis of the smoke dynamics is used for additional verification of

the candidate regions. The regions are tracked during a predefined timeframe

to validate consistency of smoke-like behavior. One of the primary features of

interest is the growth rate of the detected region [3, 10]. Smoke regions should

exhibit gradual growth, as well as upward and lateral motion, especially in

the incipient phase of a wildfire. The accurate growth rate of smoke regions is

rather difficult to predict, as it is significantly affected by various influences,

such as the wind, temperature or terrain configuration.

Existing smoke detection methods define the growth rate of the detected

regions by the number of pixels, similar to the region size parameter. A

smoke phenomenon located a short distance from the camera, appears larger

in the input image then a phenomenon of equal size located at a greater

distance. Therefore, expressing the growth rate as the number of pixels

could lead to false conclusions. Our solution to this problem is to express the
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value of growth rate parameter in standard units of measurement by using

the augmented reality and GIS technology. In this way, the growth rate of

the smoke region is not dependent on the type of the camera used for the

detection or the location of the observed phenomena in the input image.

2.4. Decision Phase

Information about the candidate regions is accumulated throughout the

detection process. The features are analyzed in the decision phase to provide

the final decision about the specific region. This phase occurs only for the

candidate regions that have not been eliminated in one of the previous phases.

The standard methods take several aspects of the candidate regions into

account, such as the amount of chromatic deviation from the reference values,

the texture deviation based on texture descriptors, the dynamics of the region

and other aspects specific to different detection systems. There are different

approaches to the decision process, such as the Bayesian approach [12], neural

networks [10, 22], random forests [31–33], support vector machines [34], the

mechanism of thought [4], and others.

We propose introducing a new parameter in the decision phase. This

parameter represents a local sensitivity level based on a fire risk index for the

observed region. The geographic information system calculates the risk index

based on the vegetation type, terrain configuration, meteorological conditions

and other factors (explained in detail in Sect. 4.2). This parameter indicates

how strong the region features need to be trigger an alarm. This approach

allows the system sensitivity to dynamically adapt to specific conditions and

situations in the environment where the detection takes place.
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3. Scene Calibration Based on Augmented Reality

The first step towards adaptively estimating the visual smoke detection

parameters is calculating of spatial data, more specifically, geographic co-

ordinates and physical distances, for each pixel in the input image. This

process is called scene calibration, where the goal is to find a link between

the real world and the digital elevation model based on precise topography.

This model is henceforth referred to as the virtual terrain. This calibration

can be achieved using the augmented reality methodology, or, in other words,

using a combination of computer vision and computer graphics techniques.

Note that the primary goal of our scene calibration process is not to display

the virtual terrain, but to use the information gathered from the position and

the orientation of the camera with respect to the virtual terrain to calculate

the spatial data for each pixel in the input image.

We have developed a new system dedicated to this process. The spatial

data have to be further processed to achieve the proposed improvement, so an

interface to GIS has been developed. More detail about GIS and calculation

of these data is described in Sect. 4.

In the following subsections we will describe in more detail the methods

we used to achieve the desired results.

3.1. Scene Calibration and Registration Errors

In recent years, real-time terrain visualization has become an integral

part of many GIS technologies [35–37]. Although GIS applications offer a

wide range of advanced terrain manipulation functionalities, they are not

designed as augmented reality systems and cannot be used during the scene
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calibration process. Therefore, it is necessary to develop a scene calibration

system with an interface to GIS.

While it was possible to develop such a system from scratch, we chose to

use Capaware as a basis for our system [38]. This is open source software

that, among other functionalities, has the ability to visualize a virtual terrain

overlaid with other 3D models. Only developing a plugin for this software

was not feasible, as we needed to modify and improve the core of the Ca-

paware software to achieve a fully functional augmented reality and terrain

visualization system.

For scene calibration purposes, each camera from the real world is rep-

resented by a virtual camera. Augmented reality systems combine physical

objects with computer-generated images. For this reason, it is crucial to find

the most suitable model of a virtual camera that best corresponds to a real

camera. A properly chosen virtual camera model ensures a reduction in the

number of registration errors.

Finding a suitable model for the virtual camera is associated with the

problem of 3D objects registration inside an augmented reality system. The

extrinsic parameters in our solution are based on information from the sensors

that define the orientation and location of the real camera. The intrinsic

parameters are based on an accurate calibration of the real camera. We

calculate the intrinsic parameters of the real camera by using the method

proposed in [39]. Because the virtual camera model (OpenGL camera) is not

defined by intrinsic and extrinsic parameters, but a completely different set

of parameters, we must find equations to convert from one model to another.

With the known intrinsic and extrinsic parameters of the real camera, it is
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possible to determine parameters of the virtual camera to create identical

camera views and achieve accurate alignment of the real and the virtual

environment. This is further described in Sect. 3.2.

The virtual terrain is a digital elevation model based on precise topog-

raphy. Therefore, each point on this terrain is correctly georeferenced and

has a corresponding point in the real world. A method of representing the

surface of the real world on a plane must be chosen for our application. An

experimental analysis was carried out, and several map projections were con-

sidered for our virtual terrain model. We propose the projection defined by

EPSG:900913, a close variant of the Mercator projection. The experimental

results are out of scope of this paper, considering the quality and widespread

usage of this projection.

The spatial data can be extracted from the virtual terrain, and each

vertex point can be expressed by the specific coordinates that correspond to

the accurate geographic coordinates in the real world. For each pixel inside

a virtual camera frame, a ray can be cast and the corresponding coordinates

of the virtual terrain visible at those specific pixel coordinates can be found.

Finally, if the scene calibration is executed successfully, the real and the

virtual cameras share the same view, and for each pixel in the image of the

real camera, it is possible to calculate the correct geographic coordinates of

the point in the real world.

Cameras used for surveillance and monitoring usually cover an 360 ◦ area

and in this way control the entire region of interest. Surveillance and mon-

itoring can either be conducted manually by the firefighting operators, or,

more commonly automatically using up to 64 predefined camera positions
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and zoom levels (preset positions). Because the majority, if not all smoke

detection algorithms, operate in automatic mode most of the time and detect

smoke only when the camera is stationary, it is reasonable to compute the

required parameters only when the camera is positioned at particular pre-

set position. In this way, we can eliminate the registration errors caused by

computational delay and unexpected camera movement. The GIS data can

be prepared in advance for each preset position, and thus the chosen smoke

detection algorithm can be run in real-time without compromising the speed

of the original algorithm.

As mentioned, a connection between computer vision and computer

graphics is used to develop a scene calibration system based on augmented

reality. To our knowledge, only a few works compare the image formation

pipelines in computer vision and computer graphics [40]. Some other works

try to find spatial information without this connection [41] for the purpose

of obtaining the precise position of a forest fire point. Here we describe the

methods that we use to calculate the spatial data for the scene visible in the

camera input image.

3.2. Connection Between Image Formation Pipelines in Computer Vision

and Graphics

For the representation and definition of the real camera we use a pinhole

camera model, defined by intrinsic and extrinsic parameters. Eq. (1)-(2)

show the transformations and parameters required for the calculation of the

pixel coordinates in the image plane of the real camera.
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Figure 1: Image formation in the image plane of a real camera

x(Xr, Yr) = PXw (1)

P = K[R|T ] =


fx 0 u0

0 fy v0

0 0 1

 [R|T ] (2)

where (Xr, Yr) are the Cartesian coordinates of the point x in the real

camera image with the origin in the upper-left corner of the image plane,

as shown in Fig. 1. Point Xw is a point in the real world that is visible as

the point x in the real camera image. The coordinates of the point Xw are

defined in the three-dimensional Cartesian coordinate system used by the

EPSG:900913, map projection with the origin on the equator and the x-axis

along the equator, where the third coordinate corresponds to the height of

the terrain. The matrix P is the projection matrix, the matrix K represents

the intrinsic parameters of the real camera, where fx,fy are the focal lengths
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in pixels, and u0,v0 define the optical center. The extrinsic parameters are

defined by the matrix R, representing the rotation matrix and T , representing

the translation vector.

Fig. 1 shows the graphical representation of the image formed by the real

camera with all the required parameters. The focal length f in the Fig. 1 is

measured in a unit of length (such as millimeters) and should be converted

to pixels. Because the pixels are not always square, the focal length should

be measured in both directions (fx, fy).

The location and the orientation of the camera define the translation

vector T and the rotation matrixR, respectively. If this information is known,

any point in the real world (Xw) can be expressed as the eye coordinates

(Xe, Ye, Ze), with the camera as the origin of the eye coordinate system.

Therefore, the coordinates (Xr, Yr) of the point x in the image plane of the

real camera can be calculated using Eq. (3)-(4).

Xr = fx
Xe

Ze

+ u0 (3)

Yr = fy
Ye
Ze

+ v0 (4)

On the other hand, we use an OpenGL camera as the representation of

the virtual camera. Fig. 2 shows the graphical representation of the image

formation pipeline in OpenGL, and the general coordinate transformations

occurring in the image formation process of a virtual camera.

Every point on the virtual terrain is georeferenced using the same Carte-

sian coordinate system used by the EPSG:900913 map projection. The co-

ordinates of these points are transformed into the eye coordinates Xe, Ye, Ze
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using the modelview matrix. Thus, the modelview matrix corresponds to the

extrinsic parameters of a real camera. For this case, we use the perspective

projection as seen in Fig. 2(a). The next step is using a projection ma-

trix to transform the eye coordinates to clip coordinates Xc, Yc, Zc, as shown

in Fig. 2(b). The clip coordinates are transformed into normalized device

coordinates XNDC , YNDC , ZNDC using the perspective division. The normal-

ized device coordinates of all the visible objects range from -1 to 1 for all

three axes, as seen in Fig. 2(c). Finally, the normalized device coordinates

are scaled and transformed into the window coordinates using the viewport

transformations (Fig. 2(d)).

The projection matrix is defined by the field of view angle (in degrees)

in the y direction (fovy), the aspect ratio that determines the field of view

in the x direction (aspect), the distance from the viewer to the near clipping

plane (zNear) and the distance from the viewer to the far clipping plane

(zFar). The projection matrix is shown in Eq. (5).


Xc

Yc

Zc

Wc

 =



cot(fovy/2)
aspect

0 0 0

0 cot(fovy/2) 0 0

0 0 zFar+zNear
zNear−zFar

2∗zFar∗zNear
zNear−zFar

0 0 −1 0




Xe

Ye

Ze

1


(5)

Eq. (6) shows the transformation process from the clip coordinates di-

rectly into the window coordinates. In this equation x0 and y0 specify the

lower left corner of the viewport rectangle, in pixels, while width and height

specify the width and height of the viewport, as shown in Fig. 2(d). Param-
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coordinates of all visible objects range from -1 to 1 for all three axes, as seen

in Fig. 2 (c). Finally, normalized device coordinates are scaled and trans-

formed to the window coordinates using the viewport transformations (Fig.

2 (d)).

fovy
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h
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Perspective
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Figure 2: Image formation in the image plane of a virtual camera

The projection matrix is defined by the field of view angle (in degrees)

in the y direction (fovy), the aspect ratio that determines the field of view

in the x direction (aspect), the distance from the viewer to the near clipping

plane (zNear) and the distance from the viewer to the far clipping plane

(zFar). The projection matrix is shown in Eq. (5).
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eter s is the scaling factor of the homogeneous pixel coordinate.

s


u

v

1

 =


width

2
0 width

2
+ x0

0 height
2

height
2

+ y0

0 0 1



Xc

Yc

Zc

 (6)

Figs. 1 and 2 show that the coordinate systems of the virtual and real

cameras do not share the same orientation. Therefore, Eq. (7)-(8) are used

to calculate the coordinates on the screen of the virtual camera (Xv, Xv).
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Xv =
cot (fovy/2)

aspect
(
Xe

Ze

)
width

2
+ (

width

2
+ x0) (7)

Yv = − cot (fovy/2)(
Ye
Ze

)
height

2
+ (

height

2
+ y0) (8)

Because the modelview matrix corresponds to the extrinsic parameters of

the real camera, here we inspect the differences between the intrinsic param-

eters of the real camera and the OpenGL parameters that define the view

of the virtual camera. We can assume that (Xr, Yr) from the Eq. (3)-(4),

and (Yv, Yv) from the Eq. (7)-(8) represent the same point on the screen of

the same dimensions (width, height). However, there is a difference in the

orientation of the pixel coordinate systems in OpenGL and the real image. If

this is taken into consideration, we can calculate the following Eq. (9)-(12)

that describe the conversion process from the intrinsic parameters that define

the real camera to the OpenGL parameters that define the virtual camera

and vice versa.

x0 = u0 −
width

2
, u0 = x0 +

width

2
(9)

y0 =
height

2
− v0, v0 =

height

2
− y0 (10)

fovy = 2 ∗ cot−1(
2fy

height
), fy =

height

2 ∗ tan(fovy
2

)
(11)

aspect =
width

height

fy
fx
, fx =

width

height

fy
aspect

(12)

Eq. (9)-(12) are the basis for the development of the scene calibration

system. The intrinsic parameters of the real camera fx, fy, u0 and v0, can

now be transformed into the parameters of the virtual camera, x0, y0, fovy
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and aspect. Note that these parameters only need to be calculated once for

a single camera.

Because the real and the virtual terrain are both georeferenced using the

same coordinate system, the application of these equations results in the

same view for the virtual and the real camera. Recall that for a successful

scene calibration process, the location and orientation of the camera must

be known as well. An example of a real and a virtual camera that share the

same view is given in Fig. 3.

Information such as the geographic location is stored in the virtual ter-

rain. Also note that the distance from the virtual camera to any point on

the virtual terrain is stored in the z-buffer of OpenGL. Therefore, as the

final result of the scene calibration process, each pixel in the input image

(either real or the virtual) is associated with both a geographic location and

a distance from the camera.

4. Pixel Coverage and Fire Risk Index Data Preparation

In the previous sections, we described how to calculate the correct geo-

graphic coordinates and relative distances from the camera for each pixel of

the input image. These data represent sufficient information to estimate the

dimensions of the objects visible in the scene, as well as to estimate the fire

risk in a particular part of the image.

To estimate the real-world dimensions of visible objects in the image, we

have developed a concept of a pixel coverage map, where each pixel holds

the information about the real-world dimensions expressed in standard units

of measurement. Further, using GIS and additional information such as
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Figure 3: Examples of the scene calibration system that shows the similar-

ities and differences between the real and the virtual terrain. Geographic

coordinates are assigned to each pixel on the screen

meteorological and geographical data, we calculate a fire risk index map

where fire risk indexes are associated with the geographic coordinates of

each point in the image plane.

The pixel coverage and fire risk index maps contain the information about

the environment and the current conditions prevailing in the scene. To

achieve the desired quality of detection and to ensure that only the latest
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and the most detailed information is used, the fire risk data are dynamically

calculated at pixel level.

The scene calibration system is connected with a geographic information

system that operates within the same geographic region and shares the same

map projection and datum. This ensures the compatibility of the data and

the interoperability between the two parts of the system. The GIS system

automatically computes all the required data before the visual smoke detec-

tion algorithm is executed. Recall that the required data are calculated only

for the predefined preset positions, which allows the system to operate in

real-time.

A more detailed description of the pixel coverage and fire risk index maps

is presented in the following subsections.

4.1. Pixel Coverage Map

The geographic coordinates and distances from the camera of each pixel in

the image plane could be directly used to produce the depth map. However,

the relative distances from the camera stored in the depth map are not always

useful, especially if the camera is recording while zoomed in. It is more

appropriate to calculate the area of the real world covered by each pixel in

the camera image plane.

The actual dimensions of objects in the real world that are visible in the

input image are difficult to estimate. In most cases, the information about

the third dimension is irretrievably lost. We propose that the size of the

object be estimated from its projection on to the plane. This plane has

following characteristics: it and the observed object are equal distance from

the camera and it is parallel to the camera’s image plane.

20



It can also be concluded that each pixel in the image also represents a

space in the real world. This space can be projected on to the described

plane. In this way, we can estimate the size of the space visible in the pixel.

A map created in this manner, where each pixel represents the size of the

space visible in one pixel, is named a pixel coverage map.

Fig. 4 demonstrates the method used to estimate the size of the 3D space

projected onto the plane that is parallel to the camera image plane inside

one pixel, used for the calculation of the pixel coverage map. The pixel

Tp(x, y) shown at coordinates (x, y) displays the three-dimensional space in

the vicinity of the point TUTM(X, Y, Z) in the real world. Because elevation

data are known for every point of the terrain, the objective is to estimate

the dimensions of the space around point TUTM , or in other words the size

of the projection of that space onto the plane R containing the point TUTM

and parallel to the camera image plane.

Two points are defined, TUTM1 and TUTM2 , that are equally distant from

the point TUTM and positioned at the same height Z = h as the point TUTM .

Additionally, the points TUTM1 , TUTM and TUTM2 form a straight line segment

defined by the distance 2d. The point TUTM1 is in the image plane shown

inside the pixel Tp1, and the point TUTM2 is inside the pixel Tp2. Therefore,

in the image plane a line segment Tp1Tp2 is formed, with a defined length 2dp.

The lengths d and h are expressed in meters, while length dp is expressed

in the number of pixels. Bacause d and dp represent the same length, it is

possible to calculate the relationship between those units.

If we make the assumption that the pixels are square, d2 represents the

area of the projected space onto the plane containing point TUTM and parallel
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to the camera image plane. Therefore, d2 represents one value in the proposed

pixel coverage map for the observed pixel in the camera image plane.
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Figure 4: Calculation of pixel coverage values

The pixel coverage map contains information about the real-world cover-

age area for each pixel in the image expressed in square meters, and should

be calculated only once for a single preset position of the camera. Fig. 5

shows a visual representation of the pixel coverage map for the image taken

by the real camera shown in Fig. 6(a). The intensity of each pixel inside this

visual representation of the pixel coverage map corresponds to the 3D space

area that the pixel covers. Note that Fig. 5 is a grayscale image where the

intensity of each pixel is limited to 255 values.

In conclusion, terrain that is closer to the camera has a smaller pixel

coverage area; the corresponding pixels in Fig. 5 are darker. The pixel
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Figure 5: Visual representation of the pixel coverage map using the grayscale

image (left) and the actual data table filled with pixel coverage values for

each pixel in the image (right). The visual representation is limited to 255

colors.

coverage area and the distance from the camera are directly proportional;

the value of pixel coverage area increases proportionally with the distance

from the camera.

4.2. Fire Risk Index Map

There are several existing forest fire indexes. The European Forest Fires

Risk Forecasting System (EFFRFS) [42] consists of static and dynamic for-

est fire indexes. The probability of fire occurrence (based on vegetation, to-

pography and socio-economic characteristics of geographic areas) and likely

damage belong to the static indexes, while the meteorological fire risk and

vegetation stress fire risk belong to the dynamic indexes. The static indexes

are computed once before each fire season and dynamic are calculated on a

daily basis.

The Canadian fire weather index [43] consists of six components: three
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primary sub-indexes representing the fuel moisture, two intermediate sub-

indexes representing the rate of spread and fuel consumption and a final

index representing fire intensity as an energy output rate per unit length

of fire front. The Canadian fire weather index shows the daily variation in

temperature, relative humidity, wind speed, and rain. This index is also part

of the meteorological fire risk of the European Forest Fires Risk Forecasting

System.

Several forest fire indexes are based on estimates of the atmospheric con-

ditions in the vicinity of combustible vegetation or the probability of a fire

igniting based on the proximity of dead vegetation and fine fuel moisture.

One example of a forest fire index, proposed in [44], takes into account sev-

eral factors that affect the fire hazards, such as the slope of the terrain or

meteorological conditions, emergency response factors, such as watch-tower

proximity, and vulnerability factors, such as the population density and the

value of forest resources.

In [45, 46] another forest fire index is proposed that is computed from

topography, distance from roads and distance from settlements using a com-

bination of remote sensing and GIS data. In [47], a forest fire index is com-

puted as the combination of hazard factors, such as the population density

or meteorological conditions, vulnerability factors, such as life and economy

vulnerabilities, emergency response and recovery capability factors and ex-

posure factors, such as the residential population or the number of livestock.

In [48], a probability-based model is used to estimate the wildfire risk.

Any of the developed systems can be used as the input for the visual smoke

detection algorithm. Additionally, we have developed a micro-location fire
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risk index [49, 50] that uses several GIS layers to calculate the final fire risk

index: climatological and meteorological layers, a vegetation layer, terrain

configuration, the history of forest fires, and sociological layers, such as layers

based on the human infrastructure and layers based on human activities.

Most of the layers used for the micro-location fire risk index are static and

only need to be calculated once. On the other hand, meteorological data

are collected twice a day, along with a forecast for the next 12 hours, so the

corresponding layers should be updated accordingly.

GIS is used to retrieve the fire risk index at specific geographic coordinates

representing the point visible at specific pixel coordinates in the image plane.

After iterating through all the pixels, a fire risk index map is generated and

used as an input for the detection system. The fire risk index depends on

dynamic data, meaning that the proposed fire risk index maps are prone to

changes and should be calculated several times a day for all preset positions.

Fig. 6(b) shows an example of a fire risk index map for the image shown in

Fig. 6(a) during a period with a relatively high risk of wildfires.

Figure 6: (a) Original image, (b) micro-location fire risk index map for the

visible region (darker areas indicate lower fire risk)
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5. Detection Parameters Adjustment

In Sect. 2, we have described several phases common to smoke detec-

tion processes. Using the spatial and fire risk data given in Sect. 4, we

can adjust several standard detection parameters, as well as the stream of

input images. These adjustments can be applied to the majority of smoke

detection methods because they have similar detection parameters. This can

be accomplished with minimal or no modifications to the source code of the

algorithms. There are five main improvements based on pixel coverage and

fire risk index maps:

• the adjustment of the motion detection sensitivity

• selective blurring of input images based on point distances from the

camera

• definition of the minimal candidate region size

• dynamics analysis based on the detected region growth rate

• the final verification using the fire risk index

First, the motion detection sensitivity threshold is adjusted based on

the size of the pixel coverage area. It is possible to calculate a single general

motion detection sensitivity parameter for the entire scene, but it is better to

do this on a pixel level. This allows a more accurate selection of the regions

of interest in the observed scene. As mentioned before, motion detection

sensitivity is proportional to the distance of the region of interest from the

camera, and therefore inversely proportional to the pixel coverage values.
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The movement of the objects located at greater distances from the camera is

more difficult to detect, and accordingly, the motion detection should be more

sensitive in that case. On the other hand, the movement of the objects closer

to the camera is accentuated and in many situations the cause of false alarms.

In this case the motion detection sensitivity should be notably decreased. We

use the information about the distance of the pixel to increase or decrease the

sensitivity for that area by a maximum ± 10 %. Fig. 7 shows the successful

detection of distant smoke because of the higher motion detection sensitivity

for the observed region.

Figure 7: Distant objects and phenomena appear smaller in the image, as

their size is inversely proportional to the distance from the camera. Also

note that distant movement requires high motion detection sensitivity.

Another important adjustment is modifying the input image stream with

selective region blurring. The input is blurred to reduce the unnecessary

movement and image noise. The amount of blur is inversely proportional to

the distance of the terrain from the camera. We propose motion blurring in

the horizontal direction, as it can eliminate most of the unwanted movements

that may cause false alarms. As the smoke usually moves upward, it is not
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significantly affected by the motion blur in the horizontal direction. An

example of image blurring based on pixel coverage map is shown in Fig. 8.

Figure 8: An example of image blurring based on spatial data. (a) Original

image, (b) blurred input image. The amount of blur is inversely proportional

to the distance from the camera

Another estimated parameter is the threshold value for a minimal region

size. Using the pixel coverage map (described in Sect. 4.1), it is possible

to estimate the approximate physical size of the smoke region. Although it

is not possible to determine the exact size of the smoke region, due to its

unpredictable movement and positioning, an approximate estimate is used to

improve the candidate region filtering process. Among all the pixels that are

detected as smoke, we choose the one with the lowest pixel coverage value.

The chosen value, multiplied by the number of connected pixels detected as

smoke, represents the real-world size of the detected phenomena. We chose

this value to reduce the probability of error because the smoke that rises

above the terrain can sometimes be positioned in front of the distant terrain.

All detected regions covering less than 30 m2 are dismissed as non-smoke

regions.
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A change in the physical size of the region is an important indicator

that allows the dismissal of regions that do not exhibit smoke-like behav-

ior. Smoke detection methods usually define a threshold used to limit the

dynamics allowed for the candidate regions. We can estimate the region dy-

namics threshold by using the pixel coverage map in the same manner as the

threshold value for a minimal region size. It is possible to define upper and

lower growth rate thresholds taking into account the estimated size of the

detected region.

We conducted offline measurements of the rate of spread of smoke in the

early wildfire phases. The measurements were conducted on videos recorded

with multiple cameras on various locations. Smoke plumes were tracked in

terms of size during the incipient phase of wildfire, and we have established

that the smoke behaves according to certain rules. The t location-scale distri-

bution is the distribution with the best fit on the obtained data that describes

the change in the smoke area. We have also observed the standard deviation

and the average of the two-dimensional smoke rate of spread in the cam-

era image plane. The offline data show that the average smoke area rate of

spread in the image plane is 16.04 m2/s with standard deviation (σ) of 76.33

m2/s in the first 3 minutes after the first occurrence.

During the incipient phase of wildfire, it can be shown that over 99

percent of smoke area change observations fall into the interval defined by

(µ−6σ, µ+6σ). Because the real smoke region size could be estimated using

the proposed pixel coverage map, it is possible to eliminate any phenomena

that grows or shrinks faster than the smoke in the incipient phase of wild-

fire. As an example, it is possible to eliminate significant changes in lighting,
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especially intensity changes during sunrise or sunset, shadowing caused by

clouds, sunlight artifacts, etc. Details of the experimental analysis of this

research are beyond the scope of this paper, but will be published separately

in the near future.

Finally, the candidate regions are additionally verified by using the fire

risk index map, in this case the micro-location forest fire risk index, to pro-

duce a more certain final decision. More information about fire risk index

map is given in Sect. 4.2. The fire risk index is taken into account in the

last stage of detection, where the final decision about the candidate region

is made. The fire risk index for the candidate region is calculated as the

mean value of the fire risk indexes of individual pixels contained in the re-

gion. After the complete detection and analysis process the final decision

about a particular potential alarm has to be made. The decision is made

based on different aspects of the analysis of the detected region (depending

on the specific detection method) and the information about the fire risk.

The fire risk influences the final decision to a certain degree, depending on

the preferred tuning of the system and the specific detection method.

6. Evaluation

The proposed improvement of smoke detection systems is evaluated using

three smoke detection methods. Every method is tested with and without

proposed improvements on a database consisting of 2977 images that are con-

tained in 23 video sequences, of which 16 contain smoke. The images were

extracted from the video every 1 second, meaning that the total time span of

the footage is approximately 50 minutes. The smoke is visible in its various
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forms in 1839 images (a total of approximately 30 minutes), while the rest

of the images (1138) are necessary for a quality evaluation and include phe-

nomena that could produce false alarms. Video sequences include phenom-

ena such as clouds and shadowing by clouds, vegetation movement caused by

wind, changes in lightning conditions during sunset, and the movements of

rivers and sea. Most of the videos from this database are publicly avail-

able (http://wildfire.fesb.hr/index.php?option=com_content&view=

article&id=65).

Videos were recorded using a “Sony HDR-CX105E” video camera with

the following values for the intrinsic parameters: fx = 1423, fy = 1423,

u0 = 600, and v0 = 338. The size of the input stream image was defined

by width = 1200, height = 676. Considering the quality of the camera, the

skew factor and radial lens distortion could be ignored.

The first method (Method 1 ) [2] is a video-based smoke detection method

where the smoke detection process is divided into several detection phases.

First, the motion detection phase is executed and the moving pixels are ex-

tracted based on a background estimate. The background image is iteratively

estimated for each frame using the input image and the previous background

frame. The next phase is a texture analysis of the detected regions based

on local wavelet energy values. The method relies on the premise that the

appearance of smoke in the image region smoothes the edges and textures

and therefore reduces the amount of high frequencies. The region should

also exhibit a decrease in chrominance values, due to the influence of the

grayish smoke colors. Another indicator used to determine smoke presence is

the flickering appearance around the smoke’s edges. This behavior is evident
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from a relatively close distance, but is rather difficult to detect from greater

distances. Finally, the shape of the detected region is taken into account, as

regions of smoke should have a convex contour. This method is designed pri-

marily for close range detection (< 100m), but it can also be used at greater

distances (< 2000m). The authors have also designed new methods intended

for long range smoke detections, such as [51, 52].

The second method (Method 2 ) [3] divides the input image into smaller

regions or bins that are represented by the mean value of their constituent

pixels. The method takes into account the blue channel of each bin and

compares it to the reference image. A substantial increase in the blue chan-

nel indicates the possible presence of smoke, and the candidate regions are

further analyzed based on smoke dynamics characteristics. For an alarm to

be raised, a specified minimum number of bins should be persistently de-

tected over a specified time period. Additionally, a region growth constraint

is imposed, permitting a maximum increase in the number of detected bins

between consecutive frames. To reduce false alarms, the number of connected

components in a single frame is also limited. Finally, an alarm is raised if

the detected region satisfies the given constraints during a predefined time

period.

The third method (Method 3 ) [53] also consists of several different phases

of smoke detection. First, a segmentation and classification phase isolates

different image classes, such as sky and water regions, that can be used for

the dismissal of some categories of false alarms. Further, a motion detection

phase determines the motion regions from the input stream that are analyzed

in the following phases. The next step is the chromatic analysis of each

32



detected region based on color information, where the obtained values are

compared to the reference smoke color values. The following phase is the

texture analysis of the candidate region based on wavelet information. The

change in texture and the loss in the high frequency range is used as an

indicator of smoke presence in the region. Further, dynamic characteristics of

the candidate regions are examined for smoke-like behavior over the specified

number of frames. Finally, an alarm is raised when the detected regions are

confirmed in each phase of detection and exhibit static and dynamic smoke

characteristics.

For each method, a revised version is designed based on parameters and

selective blurring of input stream images at pixel level that is proposed in the

previous section. However, selective blurring is not implemented for Method

2 because the method performs binning of input images; therefore, additional

noise reduction is not necessary.

The evaluation of all methods is performed using the evaluation measures

for smoke detection algorithms described in [54]. Examples of detection

images for all improved methods are shown in Fig. 9.

The evaluation measures are divided into two categories: global and local

measures. Global measures evaluate algorithm performance based on results

where the smallest detection units are images, and evaluation is treated as

a binary classification problem. There are four main measures describing

different aspects of detection quality: measures for correct detections (cd),

correct rejections (cr), false alarms (fa) and missed detections (md). They

are defined as;
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cd =
TP

TP + FN
(13)

cr =
TN

TN + FP
(14)

fa =
FP

TN + FP
(15)

md =
FN

TP + FN
(16)

where TP represents the number of true positive detections, TN repre-

sents the number of true negative detections, FP represents the number of

false positive detections, and FN represents the number of false negative

detections. In the case of global measures, the values TP , TN , FP and FN

represent true or false detections or rejections, where the detection units are

images.

On the other hand, local measures regard individual pixels as smallest

detection units and address the quality of detection on this level. When

comparing several detection methods, the overall quality is best described

using the global measures because the system alarm is raised on the global

scale. The exact location of the smoke region in the image, evaluated by the

local measures, is used as a secondary indicator in the event the global values

are similar.

First, general results based on all sequences are presented for each method

in Table 1, including the information about the farthest distance where smoke

was detected.

An improvement in the reliability of detection is evident for all the meth-

ods. Another important aspect is the noticeable improvement in detection

range for all the methods. The detection range is the maximum distance at
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Figure 9: (a) Input image with visible smoke, (b) image with smoke de-

tected by Method 1 (improved), (c) image with smoke detected by Method 2

(improved), (d) image with smoke detected by Method 3 (improved))

which smoke is detected in a given set of sequences. The improvement in the

detection range is the result of detection sensitivity adjustment based on the

spatial data and the pixel coverage map. This allows for increased detection

sensitivity for areas that are located at greater distances from the camera.

It is important to emphasize that only sequences captured with the default

zoom level were taken into consideration for these experiments. Additional

improvement in detection range might be achieved by introducing a zoom

factor into the input stream, but it was not the topic of this research.

The global measures for all methods are presented in Table 2. The results
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Table 1: Detection results for all sequences

Smoke Missed Farthest detected

sequences smoke smoke distance (m)

detected sequences

Method 1 - standard 13 3 2765

Method 1 - improved 15 1 4255

Method 2 - standard 13 3 2765

Method 2 - improved 15 1 4255

Method 3 - standard 14 2 2765

Method 3 - improved 16 0 9210

show an increase in correct detections for all methods, while maintaining or

reducing the number of false alarms. The results for correct rejections and

missed detections indicate the same trend because they are complementary

to false alarms and correct detections, respectively.

The authors in [54] propose the usage of observer quality graphs that show

the values of the specific measure for all the images in the collection, sorted

according to increasing measure values. In the graphs, the y axis represents

the value of the specific measure, and the x axis represents the image rank,

or the ordinal number of the image in the sorted sequence. Figs. 10, 11

and 12 show the observer quality graphs for the local measures: correct

detections (cd), false alarms (fa) and the Matthews correlation coefficient

(mcc), respectively. The Matthews correlation coefficient [55] is defined by:
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Table 2: Global measures

Correct Correct False Missed

detections rejections alarms detections

Method 1 - standard 0.444 0.968 0.032 0.556

Method 1 - improved 0.745 0.999 0.001 0.255

Method 2 - standard 0.375 1.000 0.000 0.625

Method 2 - improved 0.591 0.999 0.001 0.409

Method 3 - standard 0.701 0.939 0.061 0.299

Method 3 - improved 0.776 0.984 0.016 0.224

mcc =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(17)

and is frequently used as a measure of quality of binary classifications.

The results for the local Matthews correlation measure (mcc) are shown in

Fig. 12. This coefficient takes into account true, false positive and negative

detections in a balanced manner, so the measure can be used even if the

classes are of very different sizes.

The results for the local cd measures show an increase in correct detections

for all improved methods in Fig. 10. However, there is also an increase in

false alarms on the local levels as shown in Fig. 11. This effect is the result

of input image blurring, which decreases the false alarm rate (the value of

the fa measure) on the global level and increases the false alarm rate on

pixel level. The blurring of the input image makes the method less sensitive

to the noise in the environment but also makes it more difficult to extract

37



the correct smoke region boundaries. Because of this effect, the regions are

segmented beyond the real boundaries of the moving object, resulting in an

increase in false positive pixels. The reliability of the overall detection is not,

however, affected by this effect.
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Figure 10: Correct detections - (a) Method 1, (b) Method 2 and (c) Method

3
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Figure 11: False alarms - (a) Method 1, (b) Method 2 and (c) Method 3

Mcc returns a value in the interval [−1, 1], where 1 represents a perfect

prediction. As seen in Fig. 12, the evaluation results for a local mcc measure

show a considerable increase in the Matthews correlation coefficient values

for all improved methods.
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Figure 12: Matthews correlation coefficients - (a) Method 1, (b) Method 2

and (c) Method 3

7. Conclusions

In this paper, we presented an improvement in the field of visual smoke

detection based on the adaptive adjustment of smoke detection parameters

and the modification of the images in the input stream. This improvement

was achieved using GIS and GIS-based augmented reality to provide a more

robust and reliable smoke detection. Most of the existing smoke detection

algorithms are designed for general use in which the user manually adjusts the

detection sensitivity parameters for the entire scene. This approach directly

affects the rate of both false alarms and correct detections. We have shown

that the existing methods could be improved by introducing scene-specific

parameter adjustments based on spatial and fire risk data for each pixel of

the input image. This improvement was achieved by integrating computer

vision and augmented reality techniques.

Five different aspects of the improvement to visual smoke detection are

proposed in this article: the adjustment of motion detection sensitivity, se-

lective blurring of input images based on point distance from the camera,
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definition of the minimal candidate region size, dynamics analysis based on

detected region growth rate and fire risk assessment using the fire risk index.

The evaluation conducted has shown improvement in the quality of pro-

posed smoke detection methods for different detection aspects. The false

alarms for standard methods were primarily caused by such phenomena as

vegetation movement caused by wind, clouds and cloud shadows, the move-

ments of rivers and sea or changes in lightning conditions during sunset, all of

which were included in the video database used for evaluation. As reflected

in the results of the evaluation, the revised methods were less sensitive to

these phenomena and have shown improvement in false alarm rate, correct

detection rate and detection range.

The most evident improvement on global level was noted for Method 1,

where the cd measure increased by more than 0.3, while the number of false

alarms was reduced to the minimum level. The difference in quality be-

tween the standard and improved methods was least noticeable for Method

3. However, note that the standard Method 3 already provides good results

(approximately 0.7 for cd measure). At local level, the improvements are

less obvious. However, based on the Matthews correlation coefficient, an

improvement is evident for all three methods.

Smoke detection system must be executed in real time. Our system per-

forms in real-time if predefined preset positions are used, and all required

data are calculated prior to detection. One of the primary drawbacks of

our system is the inability to operate in real time when the preset positions

are not predefined. The time required to calculate the pixel coverage and

fire risk index maps is several minutes, depending on the image resolution.
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Additional efforts are necessary in order to implement the proposed improve-

ments into manual operation of smoke detection systems where the camera

movement in unpredictable.

In conclusion, we demonstrated that the overall number of sequences

where smoke was detected was increased by the proposed improvements with-

out compromising the robustness and reliability of the system. However, the

operation of the improved versions is still not ideal, and there is still room

for further work and improvement in all aspects of smoke detection.
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