
Multiagent Based Greenhouse Telecontrol
System as a Tool for Distance Experimentation

D.Stipanicev*, M.Stula* and Lj.Bodrozic*
* Department for Modeling and Intelligent Computer Systems

Faculty of Electrical Engineering, Machine Engineering and Naval Architecture
UNIVERSITY OF SPLIT

darko.stipanicev@fesb.hr , maja.stula@fesb.hr , ljiljana.bodrozic@fesb.hr

Abstract— A telecontrol system controls and monitors
equipment in remote locations. The paper describes the
development of multiagent system for telecontrol of
dislocated laboratory greenhouse model, which also includes
video telepresence and teleoperation of the camera’s pan
and tilt unit. The system was developed as a part of distance
control engineering education system and its aim was
remote experimentation.

The system was conceived as a multiagent system, because
agent technology is the emerging technology for software
cooperation, especially interesting for the net applications.
The paper describes the developed multiagent system in
details, including the formalization of used agents. Common
ontology which defines vocabulary for exchanging queries
and propositions among agents was discussed, too. Ontology
is the explicit specification of knowledge conceptualization
and very important in any agent based system.

The experimental system was realized using JATLITE (Java
Agent Template) and KAPI (KQML Application
Programmer's Interface). Five different kind of agents was
used and described – the user interface agent, the
greenhouse agent, the greenhouse control executer agent,
the video agent and the video control executer agent. These
agents were responsible for all tasks, from the user – system
communication to the telecontrol, video telepresence and
teleoperation with camera’s pan & tilt unit.

I. INTRODUCTION
In control engineering education concepts taught in

classrooms has to be complemented in laboratory by
experimentation. Teaching dynamic phenomena is often
much more easily using experimentation then by written
material. Today’s information and communication
technologies, particularly Internet based technologies,
have opened a new opportunities in control teaching by
experimentation. One of these possibilities is distant or
remote experimentation.

Technology Enhanced Learning (TeL) is trying for
more than decade to provide tools and infrastructure to
education and training disciplines. A distant
experimentation using IC technologies is one of tasks
where a lot of Research and Technology Development
(R&TD) projects has been done all around the world. For
example some of successful general EU R&TD projects in
this area were:

- Lab@Future [1] – learning platform that uses novel
information and communication technologies to support
and expand laboratory teaching practice,
- CoLab [2] - a new type of learning environment
which was created to help learners to develop flexible
knowledge in science domains, skills to collect and
synthesize information and to collaborate with others,
- MOBIlearn [3] - a worldwide European-led research
and development project exploring context-sensitive
approaches to informal, problem-based and workplace
learning by using key advances in mobile technologies.
There were also a lot of projects dedicated particularly

to remote experimentation in control theory. One quite
successful project was “Virtual Laboratory Project”
done at FernUniversität Hagen with University of
Bochum and University of Dortmund as partners [4, 5, 6].
The project has started in 1988 and until today, a lot of
control experiments were realized. The other one is on-
line from 1995. It is a University of Tennessee at
Chattanooga project called “Control laboratory on –
line” [7]. The main task was the same as previously,
control engineering experimentation from remote location
using standard Web browser on the user side. On the
server side the German system was based on commercial
Matlab/Symulink® WinCon® Server, and the American
system was based on commercial LabView® server
components.

This paper describes the different approach to the
realization of distant control experimentation system. Our
main task was to realize the temperature and humidity
monitoring and control experiment with the possibility of
the video telepresence (video monitoring) of the
experimental area. One of our requests was to use existing
laboratory greenhouse model and existing video system.
The laboratory greenhouse and camera pan/tilt unit was
previously used in teaching control principles, so we had a
lot of developed software for control algorithms, sensors
monitoring, power control and pan/tilt unit operations.
The idea was to integrate the existing software in our
distant experimentation system. Because of that we have
decided to use the software agents architecture as a
platform for system realization. A multiagent system was
designed conceived of five specific software agents.
Agents were responsible for all operations, from user –
system communication to telecontrol and video
monitoring operations. As the agent communication
languages (ACL), the standard Knowledge Query and
Manipulation Language (KQML) was used. In the next

sections the system overview and more details about agent
structure and agent ontologies are described.

II. THE SYSTEM OVERVIEW
Three main tasks were defined:
• to monitor and collect greenhouse process

parameters – the temperature and the humidity,
• to control the temperature and humidity in

greenhouse using the electric heater, vetting
system and ventilators mounted on both sides of
greenhouse model,

• to have the video telepresence to experimental
area with possibility of camera control (pan and
tilt movements).

Fig. 1 shows the experimental setup.

Analog video camera

A/D & D/A board

Frame grabber

Greenhouse model

Heater

Temperature
sensor

Humidity
sensor

Figure 1. The experimental setup: laboratory greenhouse, PC with

ADDA boards, PC with frame grabber and analog video camera

Fig. 2 shows the experimental setup photo.

Figure 2. Laboratory greenhouse model and analog video camera

mounted on pan & tilt unit

The schematic drawing of the greenhouse is shown on
the Figure 3. The laboratory greenhouse was equipped
with few temperature sensors for measuring temperature
in air (T0), on the ground level and inside the ground (T11
– T23) and with one humidity sensor (H0). In our

experiments only the temperature in the air T0 and
humidity H0 was used.

Figure 3. Experimental laboratory greenhouse model

The laboratory greenhouse model was also equipped
with electric heater, controlled by triac power regulator
and controlled wetting system. On both sides of laboratory
greenhouse two ventilators were mounted, one for taking
the air from the outside space to the greenhouse, and the
other one, for taking the air from the greenhouse to the
outside space. The ventilators could be also controlled,
and they have been used as a disturbance to temperature
control system, but also as a overheat protection system.
The different initial conditions could be realized by four
openings on the greenhouse roof. For temperature and
humidity variables digitalization and heater, wetting
system and ventilators control, two CIO-DAS08/Jr-Ao
ADDA cards were used. The ADDA cards were installed
in Pentium PC. Fig. 4 shows the connection block
diagram.

PC

AIN 1

AOUT 0

AOUT 1

AIN 0

AOUT 0

AOUT 1
ADDAC#1

ADDAC#2

PS 2

PS 4

PS 1

PS 5

PS 3

PS 0

ADDA boards

HEATER

HUMIDITY
SENSOR

TEMPERATURE
SENSOR

PUMP

VENTILATOR 2

VENTILATOR 1

Sensors and
actuators

Signal
conditioning

circuits

Figure 4. Block diagram of laboratory greenhouse model monitoring

and control part

The video camera system, used in our experiments, was
not the real time video monitoring system like network
camera system. Our intention was to emphasize the

possibilities of multiagent architecture, so our video
monitoring was based on analog PAL video camera,
frame grabber for image digitalization and analog AC
drive pan/tilt unit controlled using dedicated hardware
through PC parallel port (see Figure 2). The frame grabber
and pan/tilt control unit were physically located in the
second PC (also “ancient” Pentium PC). The image was
stored to the computer disk in jpg form every x seconds,
and the user could see only the last stored image, but he
could also change the x value (x was typically set to 10
seconds) and to control pan and tilt unit movements.

III. REALISATION OF THE MULTIAGENT ARCHITECTURE
For the realization of the multiagent architecture the

JATLITE (Java Agent Template Lite) and KAPI (KQML
Application Programmer's Interface) have been used [8].
KQML (Knowledge Query and Manipulation Language)
was the Agent Communication Language (ACL) [9].
Multiagent system was based on five agent types designed
to perform different tasks [8]. They were:

• user interface agent,
• greenhouse agent,
• greenhouse control executer agent
• video agent, and
• video control executer agent.

The multiagent structure is shown on the Figure 5.

USER
INTERFACE

AGENT

AMR

GREENHOUSE
AGENT

VIDEO AGENT

CHANGE METEO ROTATE

GREENHOUSE
CONTROL
EXECUTER

AGENT

VIDEO
CONTROL
EXECUTER

AGENT

C

ACL

ACL

HTTP
FTP

Figure 5. The multiagent structure

The user interface agent was used for translation of
user demands to the agent communication language. This
agent was made as a Java applet, so the user interface
could be the standard web browser.

The task of the greenhouse agent was to get the user
demands related to the monitoring and control of the
greenhouse temperature and humidity. Agent was made as
a C process running on the computer that was attached to
the greenhouse sensors and actuators through ADDA card.
The agent had self protecting features. If the user wanted
to increase the temperature in the greenhouse higher that
normal values (for example more than 500C), the agent
would discard that demand. Also if the temperature in the

greenhouse exceeds the defined upper limit, the
greenhouse agent switches the ventilators 1 and /or 2 to
protect the plants in greenhouse.

The third agent was the greenhouse control executor
agent. This agent was the program previously developed
for reading sensors and sending control values to actuators
through ADDA card. It was running on the same
computer as the greenhouse agent. These two agents did
not communicate via ACL. They exchanged data trough
the two data files: meteo.dat and change.dat. The first one
was used to store the actual process parameters values, but
also their maximal and minimal recorded values, and the
second one for communication with greenhouse actuators.

Although control executor agent can’t “speak” ACL, it
could be considered as an agent according to the widely
accepted definition by Franklin and Graesser [11]:

“An autonomous agent is a system situated within and
a part of an environment that senses that environment and
acts on it, over time, in pursuit of its own agenda and as to
effect what it senses in the future.”

On the video side, we had the video agent. Its task was
to get the user demands related to the video monitoring.
Agent was also made as a C process running on the
second computer equipped with frame grabber.

The fifth agent, called the video control executor
agent was also the existing program responsible for
storing images from camera to the disk and sending
control signals to pan/tilt unit. It was running on the same
computer where video agent was active. The
communication between these two agents was also not
based on ACL. They exchanged data through two data
files (rotate.dat and image.jpg). The first file contained
data for pan / tilt camera movement, and the second one
was a jpg image.

All messages exchange among agents was done through
Agent Message Router (AMR) (see Figure 5). Using this
principle the agents didn’t need to maintain the exact
knowledge about other agents position in the network
(their IP address). They could communicate with other
agents using their names only.

The user interface was the standard web page,
containing user interface agent as an applet. Through the
user interface agent, the user sent its requests to the
multiagent system and got the response form the system.
For example, if the user has requested the temperature
value, the user interface agent sent the following message
to the greenhouse agent:

(ask :sender user1
:receiver greenhouse_agent
:language KQML
:ontology temperature :content (value))

The greenhouse agent read the current temperature
from the file meteo.dat. This value has been written to
meteo.dat file by the greenhouse control executer agent.
After that the greenhouse agent sent the response to the
user interface agent:

(tell :sender greenhouse_agent
:receiver user1
:language KQML
:ontology temperature :content (21.3))

The user interface agent, programmed as an applet, is
shown on Figure 6.

Figure 6. The user interface agent with dialogue example between the

user and the greenhouse agent

On the left side there are user input forms. Figure 8 shows
them enlarged. On the right side there is a communication
dialogue shown in details on the Figure 9.

Figure 7. The left side of user interface agent with user input forms

(the example is ask – temperature case)

Figure 8. The right side of user interface agent with greenhouse agent

response and complete dialogue

On the left side there is a button “E-mail” for sending
ask message using Simple Mail Transfer Protocol
(SMTP), and a button “Send” for sending message using
HyperText Transfer protocol (HTTP).

If the user wanted the video image of the

experimentation site, the user interface agent sent the
following message to the video agent:

(ask :sender user1
:receiver video_ agent
:language KQML
:ontology image :content (take))

The video agent sent the current image file image.jpg
from the disk to the web server using FTP protocol and
sent the following response to the user interface agent:

(tell :sender video_agent
:receiver user1
:language KQML
:ontology image :content (Image is sent))

This image was captured and stored to disk by the video
control executer agent. By clicking on the button “Show”,
located on the right side of the user interface agent, the
user could open this image in Web browser. Figure 9
shows an example.

Figure 9. An example of the image captured by the video control
executor agent and transferred to the Web server by video agent

If the user wanted to rotate the camera to the left (right,
up or down) the user interface agent sent the following
message to the video agent:

(ask :sender user1
:receiver video_agent
:language KQML
:ontology image :content (left))

The video agent wrote this information to the file
rotate.dat and sent the response to the user interface agent:

(tell :sender video_agent
:receiver user1
:language KQML
:ontology image :content (Camera in movement))

 Video control executer agent periodically read the file
and when the new request has been made, it sent the
appropriate command to video camera pan/tilt unit.

Figure 10 shows the sequential diagram with messages

exchanged among agents when the user requests the
temperature value, image from the camera and demand for
camera rotation.

Figure 10. Sequential diagram of agents communication

Similar messages are exchanged among agents in other
cases too.

IV. DESIGNING ONTOLOGIES
The agent definition is not the only one task in

designing multiagent system. The other quite important
one is to define ontologies and message content that
agents would use. The ontology could be defined as a
description of the entities, concepts and relationships
existing in the real world we are dealing with [12].
Common ontology defines vocabulary for exchanging
queries and propositions among agents. In our example
the agents could speak seven main ontologies:
temperature, humidity, heater, vetting, vent1, vent2 and
image
Each ontology has its own content. The content of
ontologies temperature and humidity is:

value, min, max and number.
Content elements ‘value’, ‘min’ and ‘max’ are connected
with ask messages and used by the user agent to get the
actual value, the minimum recorded value and the
maximum recorded value of the process variable. The
content element ‘number’ is connected with tell message
and represents the returned numerical value. An example
is given previously, but let us repeat only the ontology
part of ask and corresponding tell message. The ask
message was:

 :ontology temperature :content (value)
and the corresponding tell message was:

:ontology temperature :content (21.3)
This means that the actual temperature value in
greenhouse is 21.3oC .
 The content of ontologies heater, vetting, vent1 and
vent2 is:

value, number and change(number)

The content element ‘value’ is similar to previously
explain ontologies. It is used in ask message to get the
actual condition connected with heater, vetting system or
ventilators. The tell message returns the ‘number’, for
example the percentage of applied power.

The element ‘change(number)’ is the new one. It is
connected with ask message and expresses the demand for
changing the status of any actuator. For example the
ontology part of ask message could be:

 :ontology heater :content (change(80))
This expresses the user demand to set the heater level on
80% of maximal power.

The content of the ontology image is:
left, right, up, down, center, increment(number),

increment_set(number), increment_value, ‘Camera in
movement’, take, ‘Image is send’, delay(number),
delay_set(number), delay_value, number

Content elements ‘left’, ‘right’, ‘up’, ‘down’, ‘center’,
‘increment(number)’, and ‘Camera movement in
progress’ are connected with camera pan and tilt
movements. The video control executer agent had its
predefined increment (5o), but it could be changed by
content element ‘increment(number)’. The corresponding
tell message is ‘increment_set(number)’ where (number)
is actual increment value. The user was also able to get
this value using the content element ‘increment_value’.
The meaning of elements ’left’, ‘right’, ‘up’, ‘down’,
‘center’ are self explaining and their corresponding tell
message is ‘Camera movement in progress’.

Content elements ‘take’ and ‘Image is send’ are
appropriate ask and tell messages for getting jpg image
taken and stored to disk by the video control executer
agent every x seconds. The value x could be defined by
the element ‘delay(number)’ or get by ‘delay_value’.

The multiagent architecture was quite simple, but

powerful enough for experimental realization of distant
monitoring and control of laboratory greenhouse and
video monitoring system.

V. PROCESS CONTROL EXPERIMENTATION
The developed system was used in experimental

laboratory exercise for course “Process modeling and
control”. It was used for practicing and learning process
model identification. The student task was to identify the
model of the greenhouse, having the air temperature in the
greenhouse as the output variable and heater power as the
input variable. Different initial condition could be realized
by opening and closing the openings on the greenhouse
model roof. Also the disturbances could be introduced
switching-on and off ventilators on both sides of the
greenhouse or switching-on the vetting system for a
certain period of time.

 The student communication with system was done
through user interface agent. The procedure was as
follows:

a) First the power level of the heater had to be set to the
certain percentage of the maximal heater power.

b) After that the temperature value was read every x
seconds. The student task was to makes notes about these
values but also to take care about exact sampling interval.

c) The final task was to make process model
identification using different identification methods.
 Heating and cooling examples are shown on Figures 11
and 12. Figure 11 shows the situation where all openings
on greenhouse roof were closed and the heater was set to
100% power. Figure 12 shows the situation when all
openings were closed, too, heater was set to 0%, and
Vent1 was set to 100%. The sampling interval in both
cases was 60 seconds.

Heater=100%, Roof_windows=closed

20

25

30

35

40

0 10 20 30 40 50 60 70 80
samples (T=60 sec)

Figure 11. Data for heating example with closed roof windows

Heater=0%, Roof_windows=closed, Vent1=100%

20

25

30

0 10 20 30 40 50 60 70 80
samples (T=60 sec)

Figure 12. Data for cooling example with ventilator 1 switched on

The greenhouse was modeled as a first order thermal
system, so the student task was to calculate the process
time constant and the process transfer function gain. Also,
she or he had to compare these values with values
calculated using process impulse transfer function,
estimated by Least Square Estimation (LSE) algorithm.
The LSE theory was written as a chapter of e-textbook
about digital control [13]. As an example of more
advanced identification methods let us mention that the
system was also used in one diploma work about process
identification based on linear regression [14].

VI. CONCLUSION
The paper describes the development and

implementation of monitoring and control system suitable
for distant experimentation with laboratory greenhouse
model using Internet infrastructure. The system was able
to interact in both directions with the greenhouse, to read
the process parameter values (temperature and humidity),

but also to control the process actuators (heater, vetting,
ventilators). Also the video telepresence to the
experimental site was realized using video camera
mounted on pan & tilt unit. Our approach was specific,
because it was based on software agents and maximal use
of existing software for data acquisition, process control,
video image capturing and control of video camera pan
and tilt unit. For agent communication, standard KQML
(Knowledge Query and Manipulation Language) was
used. The future work is to incorporate more sophisticated
net cameras and to use the embedded Web servers instead
of PC as a unit which will gather and route data from local
sensors and actuators to the Internet network.

ACKNOWLEDGMENT
This work was supported by the Ministry of Science and

Technology of Republic Croatia under Grant 0023008
"Intelligent Agents in Modeling and Control of Complex
Systems".

REFERENCES
[1] Lab@future – EU project about learning platform that uses novel

IC Technologies - http://www.labfuture.net
[2] CoLab – Colaborative Laboratory http://colab.edte.utwente.nl
[3] MobiLearn - problem-based and workplace learning by using key

advances in mobile technologies http://www.mobilearn.org
[4] Reale Systeme im virtuellen Labor, FernUniversität Hagen,

http://prt.fernuni-hagen.de/rsvl/
[5] Chr. Schmid, Virtual Control Laboratories and Remote

Experimentation in Control Engineering. Proc. 11th EAEEIE
Annual Conference on Innovations in Education for Electrical and
Information Engineering, University of Ulm, 2000, S.213-218

[6] Chr. Schmid, Remote Experimentation in Control Engineering.
Proc. 11th Mediterranean Conference on Control and Automation
MED 2003, Rhodos, Paper IV12-01.

[7] Resource Center for Engineering Laboratories on the Web,
University of Tennessee at Chattanooga, http://chem.engr.utc.edu

[8] M. Štula, Software agents in monitoring and control of dislocated
systems, Master thesis (in Croatian), Faculty of Electrical
Engineering, Mechanical Engineering and Naval Architecture,
University of Split, Split, Croatia, 2001.

[9] T. Finin, R. Fritzson, D. McKay, R. McEntire, KQML as an Agent
Communication Language, The Proceedings of the Third
International Conference on Information and Knowledge
Management (CIKM '94), ACM Press, 1994

[10] M. Štula., D. Stipaničev, Monitoring and control of complex,
distributed systems using agent technology, Proc. of SOFTCOM
99, Int. Conf. on Software in Telecommunications and Computer
Networks, Split-Rijeka -Venice , pp. 347-354, 13-16.10. 1999.

[11] S. Franklin, A. Graesser., Is it an Agent, or just a Program? A
Taxonomy for Autonomous Agents, Proceeding of the Third
International Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996.

[12] M. Štula., D. Stipaničev, M. Bonković., Questions and possible
answers about ontologies concerning intelligent agents, Proc. of
SOFTCOM 2001 - Int. Conf. on Software in Telecommunications
and Computer Networks, Split-Dubrovnik-Ancona-Bari, pp. 775-
781, 9-12.10. 2001

[13] D.Stipaničev, J.Marasović, Parameter estimation of impulse
transfer function, E-textbook Digital control on-line (in Croatian),
http://laris.fesb.hr/digitalno_vodjenje/text_3-13.htm

[14] J. Marasović, M. Čić , M. Žuvela, Process identification based on
linear regression of data measured through the Internet, Proc. Of
SOFTCOM 2003. Int. Conf. on Software in Telecommunications
and Computer Networks , Split – Dubrovnik – Ancona - Venezia,
pp.454 – 457, 7–10.10.2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

