MATHEMATICAL and INTELLIGENT models in system simulation 287

R. Hanus, P. Kool, S. Tzafestas (editors)

J.C. Baltzer AG, Scientific Publishing Co. © IMACS, 1991

pp. 287-292

INTELLIGENT SELF-ORGANIZING CONTROLLERS AND
THEIR APPLICATION TO THE CONTROL OF DYNAMIC

SYSTEMS *

M. De NEYER!, D. STIPANICEV? and R. GOREZ!
!Laboratoire dAutomatique, UCL, Louvain-la-Neuve, Belgium

2University of Split, Split, Yugoslavia

ABSTRACT

A self-organizing controller is a fuzzy controller which learns its control strategy through experience,
Two types of self-organizing controllers (SOC) are described and compared about their mechanisms
and performances. Theoretical aspects are illustrated by some simulation runs of the control of an
inverted pendulum. The concept of a self-tuning SOC is briefly introduced.

1. INTRODUCTION

Some complex industrial processes cannot be
satisfactorily controlled by conventional automatic
controllers. Those processes are characterized either by a
non-linear or time-varying behavior, or by poor available
measurement and as consequence by a model deficiency.
On the other hand, there is an important amount of
qualitative informations in those processes and they are
often well controlled by human operators. An alternative
approach to conventional control systems may be the
investigation and the duplication of the control strategies
which are employed by the human operator. The human
operator develops a control strategy according his
experience and intuition of the process behavior.
Extraction of this knowledge is possible by discussion and
observation. The obtained result is a qualitative strategy
expressed linguistically as a set of imprecise and heuristic
rules [1]. The fuzzy logic and the fuzzy set theory allows
one to handle this qualitative information in a rigorous way
[7] and then to reproduce the operator control strategy in
the form of a control rule base. This rule base, integrated
in a automatic control system , yields a fuzzy controller

[12].

One of the difficulties in building such controllers is to
obtain the set of control rules. There are several ways of
acquiring control rules:

- manually by trial and error,
- by extracting the control strategy from an expert in the
control of the particular process as proposed above,

- on the basis of a fuzzy model of the process to be
controlled,

- by automatic learning.

This last possibility was investigated by Procyk in his self-
organizing controller [3][4].

Section 2 of the paper describes two types of self-
organizing controllers (SOC). The following sections
compare their internal mechanisms and their performances
first by logical analysis, second through some simulation
runs. Section 5 proposes a way for self-tuning of the
controllers. Conclusions are given in section 6.

2. DESCRIPTION

The self-organizing controller is a fuzzy controller which
acquires control rules through experience in order to obtain
a predetermined closed-loop control performance. Usually
it is realized as a hierarchical rule-based controller with two
layers : the first one is a rule-based fuzzy controller and the
second a learning module which generates and modifies the
rules [4]]6].

2.1 Fuzzy controller

A fuzzy controller infers a fuzzy value for its output
variable from fuzzy values of the input variables and from
the rule base. The rule base is a collection of rules
expressed as “If situation then action” statements. For
example, a rule can be

If Error is A; then control increment is B;

+ Research supported by the Belgian National incentive-program for fundamental research in Artificial Intelligence, Prime Minister’s Office -
Science Policy Programming. The scientific responsibility is assumed by its authors.

288 M. de Neyer et al./Intelligent self-organizing controllers

where Aj and Bj are labels of fuzzy sets representing
linguistic values like “small”, “high”or fuzzy numerical
values like “about 2”. A rule is represented by a fuzzy
implication.

Given an actual situation, “Error is A”, each rule gives a
contribution to the output value depending on the matching
between the actual situation and the hypothetical situation
carried by the rule. This contribution is calculated by
means of a inference law. Then contributions from all the
rules are aggregated in one global value for the output
variable. Obviously if the fuzzy controller is applied to the
control of a process in a non fuzzy environment, interfaces
for converting fuzzy values to precise ones and vice-versa
are needed, as shown in figure 1.

Rule base
R.
Set-point y !
E, AE, AU
——» Real - fuzzy | p| [nference
B interface 2 engine
AE
Y
P p ! Fuzzy - real
rocess - interface |
Figure 1.

In this study, we consider two types of controllers, both
of them having 3 inputs variables and one output variable:
E, the error, i.c the difference between the actual process
output and the desired one, AE, the variation of E, AZE, the
variation of AE, are the input variables; AU, control
increment, is the output variable of the fuzzy controller (see
figure 1). The control rules have the following form:

If (E is A; and AE is Bj and A’E is C;) then AU is D;.

where Aj, Bj, Cj and D; are labels of fuzzy sets
representing values of the previous variables. These fuzzy
sets are characterized by their membership functions p
defined on their respective “universes of discourse”, X, Y,
Z, V.

ntroller n°l

The i-th rule is represented by its fuzzy implication R; =
Aj X Bj x Cj x Dj defined by

MR 6y ,2v) = min (KA (x), Hp;(¥), Key(@), p, (W),

with x € X,ye Y,ze Z,ve V. From an actual
situation “E is A” and AE is B* and A2E is C’ ” and from

the i-th rule, one can infer a value of AU represented by the
fuzzy setD’j= A’ « B’ » C’ « R; defined by

up,(v) = max min [HA’(X), mgx min {pg-(y),

m.;x min {pcn(z), uRi(X,y,Z,V)] }]»

symbol » denoting a compositional rule of inference. The
contributions of all the rules are aggregated in one global
value represented by the fuzzy set D’ =\ D’; such that

i

Hp(v) = max Hpy2i(v).

However one needs an interface between the real world
and the fuzzy controller. First, the actual values of the
input variables are precise, non-fuzzy: error is measured,
the other variables are derived, all the variables being
scaled and quantized as follows:

¢o = QG * e(t),
Acy = Q(GaE * (e(t) - & (1)) = Q(Gag * Ae(t)),
A%eq = QG2 * (Ae(t) - Ac(t-1)) = Q(Gazg * AZ(1)),

where e(t) =1 - yp(t), Gg, Gag, Ga2E are non-lincar scale
{actors, Q(x) is the integer value which is the nearest to x;
is the set-point and yp, the process output. This non-linear
scaling tries to imitate the perception of a human being [6).
Our sensibility is relative; we feel more the difference
between 0 and 1 than between 99 and 100.

In a fuzzy domain, a precise value is represented by a
fuzzy singleton whose membership function is null
cverywhere except in one point (corresponding to the
precise value where the grade of membership is equal to 1).
Thus values of A’, B’ C’ are described by fuzzy singletons
such that JLp+(eg) = 1, up»(Aeg) = 1 and pcr(AZeg) = 1.
The use of non-fuzzy values simplifies the calculation of
the inferences.

Conversely, the fuzzy value D’ of the output variable is
‘de-fuzzified” by the “mean of maxima” method:

Aumax + Aumin

Au = R(2)v

where Aumin and Aumax are respectively the lowest and

highest elements in the universe V whose membership
value Up> is maximum, R rounding off to the nearest

integer value. Finally the actual control variable is updated,
u(t) = Gay * Au(t) + u(t-1) and applied to the process,
Gay being a constant scale factor.

Controller n°2
Multiplication is used instead of the “minimum” operator
for the fuzzy implication R;

HR(%.Y,2,¥) = R (X) * Up.(Y) * U, (@) * upy(v),

withxe X,ye Y,ze Z,ve V. In the same way, the

M. de Neyer et al./Intelligent self-organizing controllers 289

inference law D’j= A’ 0 B’ 0 C’ o R; where A’,B', C are
fuzzy sets representing the actual values of the inputs
variables, is defined by

p;(v) = max {jup 00 * max (i (y) *

max (e (@) * iR (yzv)) }.

Now the aggregation D’ = U D’; is defined by
1

B () = T upy(v)

Here the values of iy obtained through this aggregation
procedure can be greater than 1. In order to allow their
interpretation as membership function values, a scaling
would be required; in fact, it is not necessary due to the
‘de-fuzzification” procedure described below.

The real to fuzzy interface is similar to that described
above except in one point, the variables being not
quantized:

ey = GE * e(t),
Aeg = Gag * (1) - € (1-1)) = Gag + Ae(t),
AZey = Gazg * (Ae() - Ae(t-1)) = Gpzg * AZe(t),

In the fuzzy to real interface, the fuzzy value D’ is “de-
fuzzified” by the “center of gravity” method:

L v ppe(v)
Buz=Y——— whereve V.
Z upy(v)

The actual control variable u(t) is updated as explained for
the first case.

2.2 Learning module

A learning mechanism allows the acquisition and the
modification of the control rules in order to obtain a desired
closed-loop response. To reach this goal, it is necessary to
have a procedure for assessing the control performance and
one for modifying the control strategy according to the
value of a performance index (figure 2).

A performance index (PI) express how far is the process
state from the desired one. In fact, this PI corresponds to
the designer’s idea about a minimum tolerable response [4]
and is not specific to a given process. It can be described
by rules as

If (E is “about 6” and AE is “about 0”) then P1 is “about 6",

or by a table (table 1). If PI =0, the process behavior is as
desired. The set of rules with PI = 0 defines a tolerance
band in which the process output has to be contained

(figure 3). If PI = Q, the larger is its absolute value, the
further is the process state from the desired one. Its value
is a quantitative information related to the magnitude of the
correction which is required at the process output,

E, AE,
| Real - fuzzy 1 Performance index
interface 2
A°E
’ PI
Past state buffer ' Rule modifier
| Rn
Rule base
Figure 2.
A
y e Set-point
p /
t
Figure 3.

If the actual values of the input variables are quantized, the
performance index can be represented by a table the
dimension of which is equal to the number of input
variables; table 1 shows an example of performance index
table for a two inputs controller [6).

Ae

6543210121345 ¢
6| -6-6-6-6-6-6-6-4-3-2-100
5| 6665544321000
41 6-6-5-5-4-332-10000
3655432210000 1
2{ 6543211000012
A -5-4320-1-1000123

e 01 4320100011234
11-3-2-1000111234TS5
2-2-100001123456
3]-1 0000122345756
41 0000123345566
51 000123445566 6
61 001 234666¢6¢6F€66

Table 1.

Rule modification is based on the assumption that the
controller output at n samples in the past is responsible for
the present state of the process and should be changed: n,
called “delay in reward” is related to the process delay.
Usually, for a single input-single output process, the

290 M. de Neyer et al./Intelligent self-organizing controllers

amplitude of the correction is taken equal to the value of the
performance index.

To the two controllers considered above correspond two
roughly similar learning parts. The performance index
table is the same and is described by a three dimensional
array (13x13x3) whose indices are quantized values of E,
AE and A%E.

Rule modification method is slightly different for each
case. Let be R;, the rule corresponding to the process state
attime t-nT. For the first case, the rule modification is :

D;(t) = FlAu(t-nT) + (1))

with Dj, the value of the control variable of i-th rule, Au(t-
nT), the controller output at n previous samples in the past,
1(1), the correction equal to the performance index and T,
the sampling interval; F(x) is a fuzzification procedure
which consists in building a fuzzy set with a predefined
spread around a precise element x. In the second case,
several rules can be modified: R; and rules corresponding
to neighboring states at time t-nT

Dk(®) = FAug(t-nT) + w(k) * r(t))

with Aug(t-nT) is the central value of Dg(t-nT), w(k) is a
weighting factor inversely proportional to the distance

between the state at time t-nT and the state carried by rule
Rk.

Thus, any SOC contains several parameters which must
be determined:
- scaling factors: Gg, Gag, Ga2g, Gau,
- performance index table,
- delay in reward n.

3. COMPARATIVE ANALYSIS

The basic characteristics of the two SOC above described
will be compared and some conclusions about control
performances and quality will be given. The two
controllers have different grades of complexity, the first
one using ‘minimum’ and ‘maximum’ operations with
integer numbers and the second using multiplication and
addition operations with real numbers. The inference law
and fuzzy implication using product (case 2) instead of
‘minimum’ operator (case 1) give better discrimination
between the rules which are relevant to a given input
situation and those which are not [5].

The ‘maximum’ operator for aggregation merges the small
contributions of rules in the big ones whereas the addition
gives a weight to all the contributions according to the ratio
of the values of membership functions {5].

The “mean of maxima” technique used for “de-fuzzification
“in the first case gives discontinuous and abrupt changes in

the controller output. This method is such that at most 2
groups of rules (often 1 rule) contribute to the precise value
of the controller output; one group for Aumin and one for
Aumax. On the other hand, the “center of gravity” method
gives smoother transients, because several rules contribute
to the precise value of the output [S]. That explains why in
the learning part for the second case, it is possible to
modify more than one rule.

Quantization of the values of the inputs variables brings
(among other things) dead-zones around zero, the
controller output being the same (normally zero) whatever
the actual values of the variables may be near to zero.
These dead-zones are inversely proportional to the scaling
factors. (Increasing these factors gives a larger rise-time,
oscillations or difficulties in the convergence of the learning
procedure [3]). The final value of the error depends on the
Gay scaling factor, its value defining the smallest value of
the control increment. In order to obtain small steady state
errors one can decrease Gay, but small Gay restricts the
output controller range so that the rise-time decreases. If
continuous values are used for the variables in conjunction
with the “center of gravity” method, dead-zones vanish;
finer control is possible, more or less independently of
Gau. The constraint on Gpy does no longer exist since
continuous values are possible for Au. Note that when the
values of the input variables are quantized, one can simply
represent the control strategy by a decision table which
gives the precise value of output variable Au with respect to
the quantized values of the inputs variables. The use of
this table decreases the computation time and is interesting
for real time control.

The learning mechanism in the first case combined with
the “mean of maxima” method gives after learning a control
strategy where for a given controller output, often one rule
only contributes; in fact nearly for each quantized process
state visited during the learning phase, the learning
mechanism creates a rule. If a rule was created for each
visited process state, the control algorithm would be
roughly simple; the precise controller output would be
equal to the rule action corresponding to a given process
state. In such a case, any control rule can be restricted to
the following form (with one input variable):

If (quantized value of the input variable is equal to x) then
Auisequaltov, wherex € X,ve V.,

The following general facts have been observed during
simulation runs on several processes:

1) on average, the number of generated rules is greater in
the first controller. It can be explained by the one-to-one
relationship between the process states and precise
controller outputs (sce above).

2) Convergence is slower for the first SOC: the number of

M. de Neyer et al./Intelligent self-organizing controllers 291

iterations for obtaining convergence of the control
strategy is greater (the control strategy is said to have
converged, if there are no longer changes in the rule
base).

3) The ranges of the parameters values which lead to good
performances are wider for the second type of SOC.

4 SIMULATION RESULTS

In this section, some points described above are illustrated
by simulation of the control of a non-linear process: an
inverted pendulum. This process can be viewed as a basic
model of a manipulator link, it is unstable and non-linear.
The process is described by the following equation:

m126=mglsin9-ké+C

where 0, angular position of the pendulum (with respect
to a vertical line),
C, input torque,
m = 1 [kg], mass,
21=2[m], length ,
k = 1, viscous coefficient,
g =9.81, gravitational constant.

Fuzzy sets are defined on the interval [-6, 6] for E, AE,
AU and on [-1, 1} for AE; their membership functions
have a same triangular shape centered on an integer value
X0 between -6 and 6 (figure 4) or between -1 and 1. There
are 13 possible values for Aj, B; and D; and only 3 for Cj.

i

X

TN S T S A N . T .
T Lol

Figure 4.

A scaled value xg is obtained as follows:
xg = Gx * x(t) = f(Gxo * x(t)) where Gy is a constant
gain and f, a piecewise linear function (figure 5).

Xg
A

I

/
{ 1 1 { L
01 3 6 10 15 / 100
Figure 5.

The process and the control system have been simulated
using C language on an IBM PS2,

The procedure for choosing the parameters of the SOC
will not be described in details (see next section). They
were chosen in view of a rise-time around 2 seconds ,an
overshoot lower than 1% and an steady state error smaller
than 1% (table 2).

IGE Gae Ga2g Gay n

SOC1 | 100 2000 1500 0.1 2
SOC2 | 100 2000 1500 0.15 2

Table 2

Performances ratios are shown in table 3 where ‘aze’ is the
average absolute error in steady state and ‘iae’ = integral of
the absolute error with respect to time. Both of the
controllers meet the specifications but in this case the
second one has clearly better performances. Figures 6
(SOC 1) and 7 (SOC 2) show the actual control variable u
and the process output ¥p (set-point = 0.5; initial yp=0).
The control signal u varies very abruptly for the first SOC
(figure 6). The number of rules generated by the SOC is
relatively high (165 and 108) because many states are
visited during the learning due to the facts that the
controllers start without any rules, the process controlled is
unstable, and the tolerance band is narrow (high value of
gains). However the number of rules used for control is
smaller (28 and 44).

SOC1 SOC2
rise-time 1.95 1.9
overshoot 0.87% 0.08%
5% settling time 3.1 2.5
1% settling time 4.45 5.95
iae 23.79 14.49
aae 0.24% 0.0004%
number of rules 165 108
convergence after
m iterations 14 5

Table 3
| 0.5

L

%MW%WWMWWMM:M

s 128

Figure 6.

292 M. de Neyer et al./Intelligent self-organizing controllers

%

[’ -u

M 2s 125

Figure 7.

Simulation runs were done with different values of the
process parameters 1, m and k using the two controller rule

bases obtained through learning with the controller
parameters tuned as above. Steady state performances are

conserved with process parameter variations up to 40 or
50% for both controllers even further in some cases for the
first one. Stability of the closed-loop is obtained for wider
process parameter ranges with the first controller.

5. SELF-TUNING SOC

In the SOC here described, the choice of the parameter
values is done manually, being guided by heuristic rules
such that: increasing G yields smaller steady state error
and lower rise-time ,but it may result in overshoot and
oscillations in steady state; increasing Gag increases the
rise-time and decreases the overshoot and the oscillation
amplitudes in steady state; high values for Gg or/and Gag,
gives a very sensitive performance index and a too narrow
tolerance band so that convergence of the control strategy is
difficult and many of rules are generated; the steady state

error is proportional to Ef]i—E— (for the first SOC), etc...

Tuning could be done through an automatic procedure
implemented in a self-tuning SOC. The latter is based on
the following ideas: the knowledge about the influences of
some paramelers on the control and learning performances
is collected in a rule base. Those rules would express the
changes that must be brought to the parameters with respect
to performance ratios (steady state error, rise-time,
convergence...). In fact this rule base will form a third
control layer, which will allow the automatic adjustment of
the parameters for good performances.

6. CONCLUSIONS

Two types of self-organizing controllers have been
described and compared, the first one, simpler in its
mechanisms, uses quantized variables and the “mean of
maxima” method, the second one uses continuous variables
and the “center of gravity” method.

They can have similar control performances but the
variations of the actual control signal are smoother in the
second case, and in steady state, the control is better with
the second SOC often resulting in a smaller error and it is
more oscillating in the first case. The first SOC seems to
present a better robustness to the process parameter
variations.

On the other hand, the learning performances are
different: more rules are generated, slower convergence is
achieved and the parameter ranges which allows
convergence are smaller for the first controller.

To the simplicity and the less good performances of the
first SOC correspond a greater complexity and better
performances of the second.

REFERENCES

(1} King P.J., Mamdani E.H., The application of fuzzy

control systems to industrial processes, Automatica,

Pergamon Press, Great Britain, 1977, Vol.13,

pp-235-242.

Mamdani E.H., Application of fuzzy logic to
approximate reasoning using linguistic synthesis,
IEEE Trans.Computers, 1977, vol.c26, n°12,
pp.1182-1191.

(3] Procyk T.J., A self-organising controller for dynamic
processes, Research report n°6a, Queen Mary college,
London, 1977.

{4] Procyk T.J., Mamdani EH. A linguistic self-
organising controller, Automatica, Pergamon Press,
Great Britain, 1979, Vol.15, pp.15-30.

[5] Sugiyama K., Analysis and synthesis of the rule-based
self-organising controller, PhD thesis, Queen Mary
College, London, 1986.

[6] Sugiyama K., Rule-based self-organising controller,
Fuzzy computing: Theory of hardware and
applications - Ed: M.M.Gupta && T.Yamakawa,
Elsevier Science Publishers, 1988, pp.341-353.

{7} Zadeh L., A Theory of Approximate Reasoning,
Memorandum n® UCB/ERL M77/58, University of
California, 1977.

(2

—

