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Abstract. The paper describes the idea of self-tuning self-organising fuzzy

control: - Simple fuzzy controller,
as a rule-~based controller,

introduced at the beginning of seventies
had two main disadvantages:

difficulty with

definition of good control rules and problems with tuning of controller

That procedure

Self-organising controller was developed to overcome the first
In this paper we Propose a self-tuning procedure to overcome the
is based on expert knowledge about the

influence of the tuning parameters on the system response. Theoretical results
are illustrated and tested by simulation a two 1ink robot manipulator.
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INTRODUCTION

Fuzzy controllers have been introduced more than
fifteen years ago (Mamdani,1974) as a rule base
controllers structured to synthesize the
linguistic control protocol of a skilled human
operator. Since that time many applications have
been reported in different filelds (Mayers,
Scherif, 1965; Mamdani, Stipanitev, 1989). In the
last couple of years some attempts have been made
to apply ideas of fuzzy control in the field of
robotics, too, for control of robot dynamic, for
planning and control of robot motion, for analysis
and interpretation of information from robot’'s
sensors and for communication with robots using
natural language (Stipanitev, Efstathiou, 1991).
Here our particular interest is application of
fuzzy logic for control of robot dynamics.

Let us first emphasize main advantages of fuzzy
approach to control. These are:

(a) Fuzzy control does not required a detailed
mathematical model of the controlled
process to formulate the control algorithm.

(b) It has quite robust and adaptive capa-
bilities.

(c) It is capable to operate for a large range
of inputs.

Property of fuzzy controllers robustness and
adaptivity was particularly interesting for their
application in the field or robotics. Let us use
as an example a robot system with revolute and
prismatic joints (Scharf, Mandi¢, Mamdani, 1986).

Such robots are widely used for many tasks in
industry because they are fast acting and they
approach the flexibility of use which is usually
ascribed to the human arm. Industry has
successfully mastered the techniques for
manufacturing such robot arams but It is now at the
stage where their dynamic performances is often
called into question.

The problem is that the moment of inertia of the
arm links about their main control axes-rotation,
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shoulder and arm-can exhibit pronounced changes
with change in disposition of the robot, as well
as the load carried at its tip. This results im

complex dynamics as Lee (1982) has
emphasized.

Model-reference adaptive control (MRAC) is usual
approach to control such systems Disadvantage of
MRAC s that it generally requires a detailed
knowledge of the system dynamics and assumes that

(a) these are linear, and,

(b} the dynamics of the actual system differ
from the model only with respect to values of its
coefficients.

Contrary to this approach, fuzzy control approach
is based elther on only approxim aie knowledge of
the system behavior which need not be linear (in
the case of non-learning rule-base fuzzy
controller) or on very simple incremental system
model (in the case of learning, self - organizing,
rule - base fuzzy controller). Joint feature of
both fuzzy control approaches to control of robot
dynamics 1is the existence of knowledge base, or
more preciously the existence of rule-base where
rules about control procedures are stored.
Because. of that fuzzy controller is a special
case of productional system, where fuzzy set
theory has been used for representation of
knowledge (control rules) and for doing inferences
with that knowledge.

Ordinary fuzzy controller has two main
disadvantages: first it is quite difficult to fing
good control rules and second, the tuning of
control parameters was a long procedure usually
based on try-and-error. To overcome the first
problem the self-organising controller {S0C) was
developed. It was capable to create itg own
control rules automatically after a number of
learning sessions. But problems with tuning were
still present and due to even more tuning
parameters, the tuning of controller was even more
difficult. Our idea is to make this tuning
procedure automatic, so in this paper we propose a
self-tuning self-organising fuzzy controller. [t
has all features of self—organlsin@ fuzzy



controller and additionally the controller
parameters could be automatically tuned.

First, shortly the self-organising controller will
be 1introduced, then tuning procedure will be
analysed in detalls and last a numerical example
of robot dynamic control will be presented to
illustrate the proposed method. Example 1is based
on a simulation model of two-link robot
manipulator.

We want to emphasize that this study 1s in
relation with a physiological research project
aiming at the use of fuzzy model for the human
behavior and their transpose to robotics
applications.

PRINCIPLES OF A SELF-ORGANISING
CONTROLLER

In this section, the underlying principles of a
self-organising controller are given. A more
detajled description can be found in (De Neyer et
al, 90; Procyk, 79). Details of the implementation
are given in Chapter S.

A self-organising controller is a fuzzy controller
which acquires 1its control rules through
experience In order to obtain a predetermined
closed-loop control performance. It consists in
two hierarchical layers: the basic layer is a
fuzzy controller and the second one is a learning
module which generates and modifies control rules
(Fig.1).

PERFORMANCE
INDEX

RULE PAST STATE

PROCESS

Fig. 1. Self-organising controller
Q~F quantitative to fuzzy interface
F-Q fuzzy to quantitative interface

The control strategy of the fuzzy controller ig
described by a set of linguistic rules
as " if situation™ then action®
example {s

, expressed
statements. An

If Error is AI and Variation of error is B
Then Control = C l
1

where A‘, B‘. C| are linguistic-fuzzy values like

big, swmall, etc. They are labels of fuzzy sets
describing the meaning of those values. Fuzzy sets
are characterized by a membership function defined
on an ordinary set (called universe of discourse.
Error and control are the controller fuzzy
variables. For a given actual situation (error =
A) each rules gives a contribution to the control
variable by means of an inference law and all the
contributions are gathered in one fuzzy value
using an aggregation method.

In control applications, both values coming form
measure devices and values entering the actuator
are mnot fuzzy, they are precise numbers, so
interfaces between the real-world and the
controller are needed. They perform two functions:
scaling and conversion from quantitative to fuzzy
and vice-versa. Scaling is due to the boundness of
the universe of discourse on which the linguistic
values are defined. -Quantitative to fuzzy
conversion is an interpretation of the real value
of the variable using linguistic values. The
inverse conversion is performed using a
defuzzification method, transforming a fuzzy value
in a quantitative one.

The learning module generates and modifies the
control rules in order to obtain a predetermined
control performance. A two steps modification
mechanism is used: first, a control performance
assessment and then a modification of the control
strategy if the performance is not satisfactory.
Performance assessment 1is done by means of a
performance index (PI). The performance index is a
measure of the difference between the actual
process output and the desired one. It is
described by linguistic rules 1like that of fuzzy
controller:

If Error is A‘ and Variation of error is B‘

Then Performance Index = D‘

All the rules with a Pl value equal to zero
defines a tolerance band in witch the process has
to be contained. A non null Pl value is a measure
of the correction which is required at the process
output.

Rule wmodification method is based on the
assumption that the controller output at n samples
in the past 1is responsible for the present
performance. If PI value is null, no modification
is performed. Otherwise, the linguistic control
value of the rule corresponding to the process
state at time t-nT is changed (T is the sampling
period, n is a delay). The new value is equal to

the sum of PI value and control value at time
t-nT.

TUNING OF CONTROLLER PARAMETERS

In synthesis of self-organising controllers one of
difficulties is the tuning of controller
parameters. SOC has a lot of parameters which have
to be defined and tuned in order to obtain

(a) satisfactory system response, and
(b} convergence of self-organisation of
control rules.

The most important parameters of SOC are

(a) scaling factors GE' GAE' GAZE and GU'
(b) delay in rule modification n,
(c) performance index (PI) table,
but
(d) definition of fuzzy values in control
- rules,
(e) definition of inference procedure. and
(f) definition of defuzzyfication method,



also have influence on close loop behavior.

A lot of simulations and experimental trials have
been wmade to compare different inference and
defuz~ ziflcation methods and to find influence of
fuzzy values definition on controller
performances. Here we have used the most simple
definition of fuzzy values by triangular fuzzy
sets, plus-product inference and center of gravity
for defuzzification without any comparison with
other methods, because our interest was primarily
in tuning of scaling factors.

Performance index table was taken from
(Sugiyama, 1986) with certain modifications,
because we have used a real three-term controller
and Sugiyama’s controller was a pseudo three-term
controller.

Delay in modification of control rules was
determinate experimentally taking into account the
behavior of the controlled systenm.

HMain attention was given to tuning of scaling ~

factors, or more preciously to tuning of input
scaling factors. Output scaling factor GU was

assumed fixed and equal to 1.

Sugiyama (1986,1988) has proposed a method for
choosing of scaling factors comparing the behavior
of SOC with that of model-reference adaptive
control {(MRAC). In this sense the allocation of
zero elements of Pl table specifies the desired
process behavior. Sugliyama made a linearisation of
PI table, assuming that zero element are on
diagonal, and after comparing that table with the
second order system, he find a correspondence
between scaling factors and behavior of reference
model and expressed that with equations

0.5
v (GE/GAE) 1)

¢ =05 (G5 G2) O (@)
Using this equations we have calculated the

dependence of scaling factors and maximal
overshoot Hp and time of maximal overshoot Tp of

the reference model. Fig.2. shows this dependence
for GAZE = 5.

The control goal is usually quicker response and
smaller overshoot. From Fig.2. it is possible to
notice that both Mp and Tp have more than one

local ainimum. Sugiyama (1986) has proposed to use
these approximate equations in tuning of SOC
parameters. We did a lot of trials applying his
methods, but without a real success. Sugiyama
proposal was to tune scaling factors in order to
define reference model which is supposed to be
linear and of the second order. His method 1is
successful for simple, llnear processes but than
we don’t need fuzzy controller at all. For more
complex nonlinear processes, as robot manipulator
is, this method of tuning parameters does not glive
satisfactory results.

Our idea was to try to summarize the influence of
different tuning parameters on systea response in
the form of tuning rules and than to use this
approximate knowledge in tuning procedure. Four
such rules could be defined: three about influence
of each scaling factor to system response and one
about relative values of scaling factors.

1. Rule about GE
Decrease of GE causes increase of system dumping

(slower response), decrease of overshoot and

increase of tolerant band around steady state
value.

Fig.2. Behavior of the reference model for GA2E= S
a) Maxlimum overshoot M

b) Time of maximal overshoot T

Note: Too big GE causes limited cycle oscillations
and instability.

2. Rule about GAE

Decrease of GAE causes decrease of dumping

(quicker response) and increase of overshoot.

Note: To small GAE causes instability.

3.Rule about GAZE

Decrease of GAzE for small values of GAE causes

decrease of dumping (quicker response) and
increase of overshoot. For large values of GAE

influence is opposite.

Note: Too big GA2E causes Increase of overshoot

and non regular response and after that
limited cycle oscillations.

4. Rule about relative values of scaling factors

To have a satisfactory response an inequality

GAE > GAZE z GE must be satisfied.

Important {is to emphasize that usually local
minima exist, so sometimes it is necessary to make
few steps in one direction to find a better
response.

This tuning strategy was used in simulation of
control of robot dynamic. After each learning
session only one gain was changed in view to
obtain better performances. Gain were changed
cyclically in following order: first GAE' then GE
and last GAZE' and than again from the beginning.



For example if speed is not satisfactory first GAE
is decreased, then GE increased and last GAZE
increased or decreased depending of the value of

GAE'

This tuning strategy is quite simple and it could
be easily implemented as a automatic tuning
procedure, so self-tuning self-organising fuzzy
controller could be constructed. The wmain
limitation of the tuning strategy is that it is
procedure for improvement of response
performances, so it lis necessary to start with
scaling factors which at least lead to a stable

closed loop and too the convergence of the control
strategy.

SIMULATION OF ROBOT DYNAMIC CONTROL

Simulations runs were performed on a PC 386
computer using a dedicated program written in C
language. A two link robot manipulator structured
according to Fig.3. is considered and described by
equations:

=16 8 8) + G (o 3)
u =16 +1.6 +CClg, 8) . (8)
=16 ] . 8) + 6 (e (1)
u, = 1,6 + 1,6, +0CCle 8) ,(8)
where IU is the matrix of inertia, CC1 represents
the Coriollis and centrifugal effects, G

1
represents the gravity effects, and ulis the

applied torque. Those terms are given by
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G1=(0'5 n‘gll*nglz)sin 9100.5 nzglzsin(el* 62) =
=P, sin 6.+ p, sin(el* 92) (10)

Gz=0.5 nzglzsin(6l¢ 02) =p, sin(61+ 82) (11)

Data of links 2 and 3 of Unimation PUMA 560 robot
manipulator are used (Geng, Jamshidi, 1988):

11= 12= 0.432 (m) p2=2.12

m = 15.91 (kg) P = 0.265
m = 11.36 (kg) P= 81.82
p = 3.82 P= 24.06

The task was to reach a desired position @

l,ref

is assumed to be in
ref

the instable part of the plain and the angle of
the second link was fixed and equal to zero. Fuzzy
controller was an incremental one. It had three
inputs and one output and control rules of the

starting from 0, where 91

form:

If (E is A and 8E 1s B, and &% 1s )
Then 8U = D -

where E_is the error, AE is the variation of the

“error AE is the varlation of AE and AU is the

increment of the control variable. A‘, B, C, D

are their respective linguistic values modeled
with simple triangular fuzzy sets. 13 linguistic
values for E, AE, AU and only 3 for AzE (positive,
negative and zero) were used.

\2
TV

Figure 3: Two-1ink robot manipulator

Inference mechanism was defined by

Mpy(2)= FliyCe ) = pple ) « uc(Azes) * uy(2)) (12)
i 1 i 1

where D is the iInferred fuzzy value from all the
rules (aggregation being done by taléing the sum of
all the contributions), e Aes.A e, are scaled

values of the errors (Fuzzy values are in upper
cases and quantitative ones are is lower cases).
Also nonlinear scaling factors were used:

x_= S(G_* x{k)) (13)
s x

where x(k) 1is tlzre actual value of sampled errors
(e(k), Bse(k), a%e(k)), GX is a constant scaling

factor and S is a piece wise linear function with
saturation. The gain of S increases when x

decreases (its shape is similar to an hyperbolic
tangent function).

Fuzzy output value D was defuzzified by a center
of gravity method

Tzep(z)
R e NCim (14)
¥

and the contrecl variable was updated as:

u(k) = u(k-1) + G, * Au (k) (15)
U s

GU being a constant scaling factor.

Performance index rules used in the learning
procedure, have the same form of the controller
ones

If (E is A and 6F is B and A°F is c,)

Then PI = E,



The rule Rc corresponding to the process state at

sampling time k-n is updated if the present value
of performance index value is different from zero
as follows:

R : If (E is A_ and AE is B_ and &°E 1s C)
C C C C
Then AU = Dc(k-n)

Dc(k) = F(&u(k-n) + PI(k))

Dc(k) being the new linguistic value of the
control variable in Rc' Au(k-n), the incremental

control output at k-n (k is the present sampling
time, n is the delay in modification), PI(k), the
present value of the performance index and F, a
fuzzification function. Fuzzification comsists in
transforming a crisp value in a fuzzy value
described by a fuzzy set having a given membership
function. Process was simulated in contimuaous time
whereas the controller has operated in discrete
time with sampling period of 0.0S).

Here below a tuning experience with the robot arm
is presented using the tuning strategy proposed
above (section 4). After each learning phase one
gailn was changed in view to obtain a better
control performance until the desired performance
is obtained. A learning phase consists in a number
of learning experiences and ends when the control
strategy converges or the maximum number of
experlences is reached. In our case this maximum
number was limited to 10.

The three inputs gains where changed in the order:

first GAE then GE and last GAZE. The control

performance was estimated by means of four ratios:
the rise time from 10X to 90% of the steady value
(RT), the 5% settling time (ST), the average
absolute error over the last 80 samples (AAE), the
integral of the square of the error (ISE).
Experimental conditions were:

= 2.3, delay n = 2, GU = 1., No. of samples =

ref

400

Seven tuning steps are described, the last one
being considered as having the desired
performance. Those steps are summarized in Table
1 giving the values of the gains and of the
ratios. First step consists 1in finding gains
values which lead to a stable closed loop and to
the convergence of the control strategy. The states
1 (Table 1 and Fig.4a) being satisfactory for the
steady state error, an increase of the speed is
tried by decreasing GAE' This increase of speed

goes together with an increase of the steady state
error (state 2). Thus next step is to decrease the
steady state error by an increase of GE As a

consequence, an increase of speed is also obtained
(state 3). The goal of the following step is the
same than the previous but by trying an increase

of GAZE' Again this leads to smaller error in

steady state and to a faster response. The three
gains have been changed, the cycle begins again.
In state S, an increase of speed is cbtained

through a decrease of GAE but with ,as a

consequence,a greater steady state error and small
oscillations. Next step is to decrease the error
in steady state. In state 6, no improvements are

observed by changing GE' This decreasing is

obtained in state 7 (Table 1 and
increase of GAZE'

At the end let us mention that ancther kind of
SOC, 1introduced by, Sugiyama (1988), was also
implemented for controlling the same robot”

Fig.Sblby an

TABLE 1 Tuning steps

state | G G, G,2. RT _ ST-- AAE ISE

9 300 80 4.11

S 0.0003 6.86
9 200 80 3.29 S 0.07 5.68

12 150 90 1.8

NN b WN =
-
N
g
0
[=]

0.06

S.4

4.2
12 200 80 2.42 3.5 0.027 5.23
2.28 3.1 0.0073 s.15

3.0

2.8

. . 4.
12 150 100 2.14 S 0.0045 4.

manipulator but gains tuning appears to be
impossible or at least very difficult. None
convergence in the rule base was observed. This
SOC 1is more complex than that one which is
presented here. In peculiar, it does not use
linguistic values for describing the control value
of a rule. The control values can be any real
value and the number of control value is not
limited. Moreover the learning procedure allows at
each sampling time the modification of several
rules. That makes the convergence harder to obtain
especially in the case of a nonlinear instable
process as we considered.

learm n°*7

learn n*8

2 4 € 9b101214 16 18 s

Figure 4: Process response
a) state 1
b) state 7

CONCLUSION

Principles of self-tuning self-organising fuzzy
control is introduced and described. Self-tuning
procedure was proposed to overcome the difficulty
with tuning the parameters of ordinary
self-organising fuzzy control. We have tried to
make the tunirg phase automatic using the
heuristic knowledge about the influence of the
tuning parameters on the system response.
Simulations were performed on nonlinear model of
two link robot manipulator and controller was used
to control the robot dynamic.



Three main difficulties were met during
implementation of self-tuning self-organising
fuzzy procedure for control of robot arm. The
first one was due to the instable characteristic
of the system. The use of large values for the
gains allows the process stabilisation but
convergence was very hard, With small values of
gains, several learning experiences were needed to
obtain stability. Afterwards convergence was
possible. This problem could be solved by
including an “"a priori® knowledge in the control
rule base to avoid instability instead of starting
the learning phase without rules as we did. That
starting rule base could reproduce approximately
the behaglor of a PID controller such that AU = E
+ AE + A'E.

The second difficulty 1s that several steps in the
same direction of change (increase or decrease)
are needed to observe the effects of these change
in gains. In fact relationships linking the ratlios
and the gain have several local minima due to the
nonlinearities of controller and process.

The third one is that it 1s necessary to start
with scaling factors which at least lead to a
stable closed loop and to the convergence of the
control strategy. Our tuning strategy is good for
improvement of response characteristics but not
for find the starting combination.

Although this study was primarily in relation with
the project alming to use the fuzzy models of the
human behavior and thelr transpose to robotics
applications, we belleve that such control
principles could be quite useful also for real
control of robot dynamic. Experimental studlies has
yet demonstrated advantages of self-organising
fuzzy control for robot dynamic control and we
hope that using self-tuning procedure it will be
even easier to implement and apply such kind of
controllers.
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