
��� � � � � �� 	
 �
��������	

��

��������	��
�	����
���

���������������������������	���

�	������
 © 1998 Visual Solutions, Inc.
All rights reserved.
vug-30-04

Visual Solutions, Inc.
487 Groton Road
Westford, MA 01886

���������� VisSim and flexWires are trademarks of Visual Solutions. IBM, Personal
System/2, and PC AT are registered trademarks of International Business
Corp. MatLab is a trademark of The MathWorks, Inc. Microsoft, MS,
MS/DOS, Excel, Windows, Windows 95, and Windows NT are registered
trademarks of Microsoft Corp. NeuroWindow is a trademark of Ward
Systems Group, Inc. Other products mentioned in this manual are trademarks
or registered trademarks of their respective manufacturers.

�	��������������
���
�	�� The information in this manual is subject to change without notice and does
not represent a commitment by Visual Solutions. Visual Solutions does not
assume responsibility for errors that may appear in this document.

No part of this manual may be reprinted or reproduced or utilized in any form
or by any electronic, mechanical, or other means without permission in
writing from Visual Solutions. The Software may not be copied or
reproduced in any form, except as stated in the terms of the Software license
agreement.

���

�	�
��
�

�
�	���
�	��� ��� �

����
���!���������"��� !

Starting VisSim .. 1
Exploring the VisSim window ... 2
Choosing commands .. 4
Using dialog boxes... 6
Creating and setting up a new block diagram .. 7
Opening an existing block diagram.. 10
Undoing an editing action .. 10
Repainting the screen ... 10
Saving a block diagram.. 11
Previewing before printing... 11
Printing... 11
Setting up the VisSim environment.. 13
Exiting VisSim... 13

����
���#��
����
�������

������������$������"�	�������������������������� !%

Block basics ... 15
Types of blocks .. 16
Identifying block parts ... 16

Inserting blocks .. 17
Setting up block properties and initial conditions .. 17

Entering numeric data .. 18
Entering arithmetic expressions ... 18
Entering C expressions .. 18
Controlling the number of displayed significant decimal digits 19

Wiring basics.. 19
Types of wires.. 19
Wiring rules ... 20
Wiring blocks together... 20
Automatically completing connections.. 21
Positioning wires.. 21
Coloring wires.. 21

��������

�&

Hiding wires... 22
Deleting wires .. 22

Connector tab basics .. 22
Adding and removing connector tabs .. 22
Unconnected input connector tabs ... 23
Setting connection classes.. 23
Displaying connector tabs in a different view ... 24

����
������'���������"�	���#%

Selecting blocks ... 25
Area Selecting.. 26
Toggle selecting... 26
Unselecting blocks ... 26

Moving and copying blocks ... 26
Rules for moving and copying blocks ... 27
Drag-and-drop editing.. 27
Copying, cutting, and pasting blocks ... 28
Copying blocks into other applications.. 29

Flipping blocks... 29
Aligning blocks vertically and horizontally ... 29
Finding and replacing blocks ... 30

Finding blocks.. 30
Replacing blocks.. 31

Deleting blocks... 32

����
���(����

����������
�	��)�	���
��� ��������������������������������������

Setting up the simulation range.. 33
Using the Range property sheet ... 34

Setting up an integration method ... 35
Using the Integration Method property sheet .. 36

Setting up simulation preferences .. 38
Using the Preferences property sheet... 39

Setting simulation defaults ... 41

����
���%��������
����"�	���*��(�

Simulation basics ... 43
Continuous system simulation ... 44
Discrete time system simulation .. 51
Hybrid system simulation .. 54

��������

&

Controlling a simulation... 54
The Control Panel .. 54
Starting a simulation .. 55
Stopping a simulation .. 55
Continuing a simulation... 55
Single-stepping a simulation.. 56
Resetting a simulation to initial conditions.. 56

More on controlling a simulation ... 56
Dynamically modifying signal values.. 56
Probing signal values ... 56
Trimming a system... 57
Resetting error conditions .. 57
Snapping system states .. 57

Troubleshooting ... 58

����
���+�����,����������
�	��� %-

Plots.. 59
Basic time domain plots... 60
Sizing a plot block ... 60
Zooming... 61
Changing plot properties.. 61

Strip charts ... 67
Basic time domain strip chart... 68
Sizing a stripChart block.. 68
Printing a stripChart block ... 68
Changing stripChart properties .. 68

Histograms ... 73
Sizing a histogram block.. 74
Changing histogram properties .. 74

Bar and needle graphs .. 75
Sizing a meter block... 75
Changing meter properties ... 76

Creating animation ... 77
Animation basics.. 77
Using the animate block... 78
Using the lineDraw block .. 81
Other ways to create animation.. 82

����
���.���	�&����
������
�/0��
�	�� �� 1�

Setting up an implicit equation... 83
Solving an implicit equation .. 84

��������

&�

Using the Implicit Solver property sheet ... 85
Implicit equation examples .. 86

Simple nonlinear implicit equation .. 86
Advanced nonlinear implicit equation ... 86

����
���1��)��2	��������	3���4�
���5�
�	� ���������������������������������1-

Global optimization basics ... 89
Cost functions with many local minimum values .. 89
Cost functions with no minimum values.. 90

Performing global optimization ... 90
Using the Optimization Properties dialog box ... 91

Global optimization examples.. 91
Optimized paper bag problem.. 91
Two segment approximation of sin(πt).. 93
Five segment approximation of sin(πt) .. 94

Troubleshooting ... 96

����
���-��*���������*���
���6��
��� ��-.

Digital filter basics ... 97
Filter operations ... 98
Time domain filters with tapped delay... 98
Time domain filters with transfer functions ... 99
Frequency domain filter implementation ... 99
Comparison of FIR and IIR filters ... 100
Interactive filter design with the transferFunction block ... 100
IIR filter design .. 100

Using the IIR Filter Properties dialog box ... 101
FIR filter design ... 104

Discrete and continuous FIR filter design.. 104
Using the FIR Filter Properties dialog box .. 105

����
���!7��$	������,�
��4
����'������
�	�� ����������������������������� !7-

Importing basics ... 109
Setting up the input file.. 109
Importing data.. 110
Using the Import Properties dialog box ... 110

Exporting basics ... 111
Exporting data.. 111
Using the Export Properties dialog box ... 112

��������

&��

DDE basics... 114
Creating an app-to-VisSim link with DDEreceive... 115
Creating a VisSim-to-app link with DDEsend... 117
Creating a two-way link with DDE ... 119
Creating DDE links with applications that do not support Copy Link and
Paste Link .. 122

����
���!!��$	������,�
��8�����*������� �������������������������������� !#�

Creating model hierarchy ... 123
Creating a compound block ... 124
Drilling into a compound block ... 124
Hiding compound blocks ... 125
Configuring pictures on compound blocks .. 125
Labeling connector tabs on compound blocks ... 126
Dissolving a compound block.. 126
Other things you can do with compound blocks.. 127

Embedding blocks.. 127
Setting up a diagram to be embedded .. 127
Embedding a block diagram .. 127
Editing an embedded block diagram.. 128
Reconnecting an embedded block diagram ... 128

Adding block diagrams .. 128
Using variables to pass signals... 129

Creating variables .. 129
Scoping variables ... 130
Built-in variables.. 132

Using path aliases to reference files ... 132
Creating path aliases .. 132
Inserting path aliases in blocks .. 133

Maintaining an edit history .. 134
Protecting your work.. 134

Protecting block diagrams.. 135
Protecting compound blocks.. 136
Protecting embed blocks .. 138

����
���!#��"�	���9�2��� !(!

* (multiply)... 142
-X (negate) ... 143
/ (divide) ... 145
< (less than) .. 147
<= (less than or equal to).. 148

��������

&���

== (equal to)... 149
!= (not equal to).. 152
> (greater than)... 153
>= (greater than or equal to)... 155
1/X (inverse) .. 156
abs .. 157
acos... 159
and.. 160
animate ... 161
asin ... 161
atan2 ... 162
bessel .. 163
bezel ... 165
buffer .. 166
button ... 168
case... 169
comment... 172
const ... 172
constraint .. 173
convert.. 173
cos .. 173
cosh .. 174
cost ... 174
crossDetect ... 175
date ... 178
DDE ... 178
DDEreceive .. 178
DDEsend .. 178
deadband .. 179
derivative.. 179
display .. 180
dotProduct .. 181
embed ... 181
error.. 181
exp.. 182
export ... 182
expression... 182
fft .. 184
gain... 186
gaussian.. 188
globalConstraint ... 188
histogram.. 188
ifft... 189
import ... 190

��������

�

index... 190
int ... 192
integrator (1/S) ... 192
invert .. 198
label.. 198
light .. 199
limit .. 201
limitedIntegrator (1/S).. 202
lineDraw... 205
log10... 205
ln... 206
map... 206
max... 215
merge.. 217
meter... 218
min ... 218
multiply .. 220
neuralNet .. 221
not... 221
or .. 222
parabola .. 223
parameterUnknown .. 224
plot ... 224
pow... 224
PRBS.. 226
pulseTrain... 226
quantize .. 227
ramp ... 229
realTime ... 229
relay.. 230
resetIntegrator (1/S) ... 231
rt-DataIn ... 234
rt-DataOut .. 234
sampleHold .. 235
scalarToVec.. 237
sign ... 238
sin ... 239
sinh ... 240
sinusoid .. 240
slider... 241
sqrt.. 242
stateSpace... 242
step ... 244
stop ... 244

��������

stripChart.. 245
summingJunction ... 245
tan... 247
tanh... 248
timeDelay ... 249
transferFunction ... 252
transpose... 255
uniform... 256
unitConversion ... 256
unitDelay.. 257
unknown... 259
userFunction... 260
variable... 260
vecToScalar.. 260
vsum... 261
wirePositioner .. 261
xor .. 261

'������ �'�����
	��5�� #+�

Customizing VisSim start-up ... 263
Customizing the VisSim window... 264

Customizing the toolbar... 265
Customizing other screen settings.. 266

Creating custom implicit solvers.. 267
Source files for building a custom implicit solver ... 268
Using vissimRequest() in a custom implicit solver.. 268
Building a custom implicit solver .. 270
Using the constraint block with a custom implicit solver 270

Creating custom global optimizers... 270
Source files for building a custom global optimizer .. 271
Using vissimRequest() in a custom global optimizer....................................... 271
Building a custom global optimizer ... 273

'������ �"��/
�������
���"�	�����
 ��������������������������������������� #.%

The big picture ... 275
Criteria for writing DLLs... 276
Building a DLL.. 276

How VisSim talks to a DLL... 277
Calling conventions ... 277
Simulation level functions ... 278
Block level functions ... 279

��������

 �

Exported functions ... 284
Debugging hints ... 287
Binding a DLL to a userFunction block... 287
Adding a user-written block to the Blocks menu ... 288

'������ �����		�3	 ������	��	���
��8�3������ ������������������������� #1-

Toolboxes... 289
Controls toolbox library... 289
Electro-mechanical toolbox library.. 290
Padé toolbox library... 290
Signal generation toolbox library... 291
Tools toolbox library ... 291

Components.. 292
DSP library .. 292
Dynamical system library .. 292
Electro-mechanical library... 292
Electrical library... 292
Hydraulic libraries ... 293
Process control library ... 295
Thermal control library .. 295
Turbine library ... 295

'������ �*���������"�	���*������� �������������������������������������� #-.

Aerospace block diagrams ... 298
Animation block diagrams ... 298
Biophysical block diagrams ... 298
Business block diagrams .. 298
Chemical engineering block diagrams ... 299
Control design block diagrams... 300
Dynamical systems block diagrams ... 300
Electro-mechanical block diagrams ... 301
Environmental block diagrams... 301
Fixed-point DSP block diagrams ... 301
Man-machine interface block diagrams .. 301
Motion control block diagrams .. 301
Optimization block diagrams ... 302
Power block diagrams .. 302
Process control block diagrams.. 302
Signal processing block diagrams .. 303
Logic diagrams and state machines.. 303

��������

 ��

'������ �*��$	������,�
��"�
���� ��� �7%

����������,�� �!�

Distributing VisSim Viewer and your block diagrams to end users 313
VisSim Viewer documentation .. 313
Installing and starting VisSim Viewer ... 314

VisSim Viewer End User License Agreement ... 315
VisSim Viewer Distribution Agreement .. 316

��� ��� �!.

� ���

�
�	���
�	�

Welcome to VisSim 3, the most comprehensive modeling and simulation
environment for developing continuous, discrete, multi-rate, and hybrid system
models and running dynamic simulations on IBM PCs and compatibles. VisSim 3
contains numerous features for simplifying system design, enhancing modeling
capabilities, and strengthening its simulation engine. A thumbnail description of
each feature can be found on page xvi.

The VisSim User’s Guide contains a comprehensive description about using VisSim
on the Windows 3.1, Windows 95, and Windows NT platforms. If you’ve purchased
Micro-VisSim 3, please read “For Micro-VisSim users,” at the bottom of this page
for a list of specifics about your version of the software.

9����
�������	����	2
,���
Before you begin using VisSim, please fill out the enclosed registration card and
mail it to us. As a registered user, you will receive a free subscription to The
flexWire, along with discount promotions and VisSim workshop schedules.

6	��:���	�������������
If you purchased Micro-VisSim, the following limitations apply to your software:

• 100 blocks per diagram

• ���������	
� block is unavailable for use

• VisSim Viewer is unavailable for use

���������	��

 �&

In addition, you also receive a compact version of VisSim/Analyze that allows you
to linearize systems containing up to seven states.

�	�&��
�	�����������
����3		�
The following typographical conventions are used in this manual:

Convention Where it’s used

Shortcut key combinations Shortcut key combinations are joined with the plus sign
(+). For example, the command CTRL+C means to hold
down the CTRL key while you press the C key.

Hot keys Hot keys are the underlined keys in VisSim’s menus,
commands, and dialog boxes. To use a hot key, press
ALT and then the key for the underlined character. For
instance, to execute the File menu’s Save command,
hold down the ALT key while you press the F key, then
release both keys and press the S key.

SMALL CAPS To indicate the names of the keys on the keyboard.

ALL CAPS To indicate directory names, file names, and acronyms.

Initial Caps To indicate menu names, commands names, and dialog
box options.

In addition, unless specifically stated otherwise, when you read “click the mouse…”
or “click on…,” it means click the left mouse button.

��

��������
To help you get the most out of VisSim, the following online information is
available:

• Online help. The online help contains step-by-step instructions for using
VisSim features.

• Online release notes. A file named README.TXT is installed in your main
VisSim directory. This file contains last minute information and changes that
were discovered after this manual went to print. For your convenience, you
should read this file immediately and print a copy of it to keep with this manual.

You may also find it helpful to browse through the sample block diagrams included
with VisSim. These diagrams, which are listed in Appendix D, “Sample Block
Diagrams,” demonstrate how VisSim is used to solve a broad spectrum of
engineering and scientific problems.

���������	��

 &

4����������
VisSim’s Help program provides online instructions for using VisSim.

� To open Help

• Do one of the following:

To Do this

Access the top level of help Select Help from the menu bar or press
ALT+H.

Access help on the selected block Click on the Help command button in the
dialog box for the block.

� To close Help

• In the Help window, choose File > Exit, or press ALT+F4.

��������������	�

When you need assistance with a Visual Solutions product, first look in the manual,
read the README.TXT file, and consult the online Help program. If you cannot
find the answer, contact the Technical Support group via toll call between 9:00 am
and 6:00 pm Eastern Standard Time, Monday through Friday, excluding holidays.
The phone number is 978-392-0100.

When you call in, please have the following information at hand:

• The version of VisSim and the version of the software operating environment
that you're using

• All screen messages

• What you were doing when the problem happened

• How you tried to solve the problem

Visual Solutions also has the following fax and email addresses:

Address/Number What it’s for

978-692-3102 Fax number

bugs@vissol.com Bug report

doc@vissol.com Documentation errors and suggestions

sales@vissol.com Sales, pricing, and general information

tech@vissol.com Technical support

���������	��

 &�

$��
;����,������������
Feature Function Benefit Application

Enhanced vector
and matrix
operations

Handles vector
and matrix algebra
(buffer,
dotProduct, invert,
multiply, trans-
pose, and vsum)

Simplifies
model design

6 DOF aerospace simu-
lations, state-space
system simulation and
control

C expression block Allows C
command or
expression to be
part of a VisSim
diagram

Simplifies
model design

Any simulation where
arithmetic expressions
need to be simplified

derivative block Calculates the
change in function
value with respect
to time.

Extends
modeling
capabilities

All simulations

Windows
Explorer-like
interface

Visually depicts
organizational
hierarchy of a
diagram

Improves
ability to navi-
gate block dia-
gram models

Large, complex models
with multiple hierarchi-
cal levels

Probe data value Displays data
entering and exit-
ing blocks

Extends data
visualization
capabilities

All simulations

Data conversion Converts units of
measurement of
data (supports
temperature, capa-
citance, speed,
mass, energy, and
power conversions
and more)

Extends
modeling
capabilities

All simulations

Connector labels Adds connector
labels to
compound blocks

Enhances
model
readability

All simulations

Connection class Categorizes
connections by
class name and
color for easy
recognition of
subcomponents

Enhances
model
readability

All simulations

���������	��

 &��

Feature Function Benefit Application
3-D mapping Provides

simultaneous
mapping for three
independent
variables

Extends
modeling
capabilities

All simulations

Floating labels Displays labels on
top of other blocks
when they overlap

Enhances
model
readability

All simulations

Multiple data types Supports char,
unsigned char,
short, unsigned
short, int, long,
unsigned long,
float, and double.

Extends
modeling
capabilities

Prototyping and
development of fixed
point and mixed (fixed
and floating point)
system simulations and
automatic code
generation

Data type
propagation

Follows ANSI C
data propagation
rules when mixing
data types and
propagates the
correct data type

Extends
modeling
capabilities

Same as above

Color coding of
data types

Displays block
data types by
color

Enhances
model
readability

Same as above

Print preview Displays a
diagram as it will
look when printed

Enhances
printing
capabilities

All simulations

Auto-pan Scrolls when the
mouse nears
window edge

Enhances user
interface

All simulations

Customizable
headers and
footers

Allows print
macros in user-
defined header
and footer text
strings

Creates
customized
reports

All simulations

Path macros Allows user-
defined names in
file paths

Aids multi-
platform
installations

Large models

Floating Find and
Replace Block
commands

Navigates mo-
dels by selecting
layer of matched
block name

Extends
modeling and
debugging
capabilities

Large models

���������	��

 &���

Feature Function Benefit Application

Multi-XY traces Allow two
simultaneous XY
traces on one plot
(for example,
“seeker vs.
target”)

Extends
modeling
capabilities

Multi-body simulations

Enhanced
simulation
warnings

Warn if time delay
or pulse interval is
non-integral
multiple of base
step size

Speeds model
debugging

All simulations

Tool tips Pop-up toolbutton
descriptions

Enhances user
interface

All simulations

Tear-off toolbars Move toolbars
anywhere on
screen

Enhances user
interface

All simulations

9�2��������
	�	
����3		��
For information on Refer to

Block diagram modeling
and simulation

Karayanakis, Nicholas M., Computer-Assisted Simulation of
Dynamic Systems with Block Diagram Languages. CRC Press,
1993.

Scientific computing Abramowitz, M.; Stegun, I. A. Handbook of Mathematical
Functions, Applied Mathematics Series, vol. 55, Washington:
National Bureau of Standards; reprinted Dover Publications,
New York, 1968.

D’Azzo, John J.; Houpis, Constantine H. Linear Control
System Analysis & Design - Conventional and Modern.
McGraw-Hill Book Company, 1988.

Fitzgerald, A. E.; Kingsley, Charles Jr.; Umans, Stephen D.
Electric Machinery. McGraw-Hill Book Company, 1983.

Flannery, B. P.; Press, W. H.; S. A.; Vetterling, W. T.
Numerical Recipes, The Art of Scientific Computing.
Cambridge University Press, 1989.

���������	��

 �

For information on Refer to

Scientific computing Franklin, Gene F.; Powell, David J. Digital Control of
Dynamic Systems. Addison-Wesley Publishing Company,
1980.

Gear, C. W. Numerical Initial Value Problems in Ordinary
Differential Equations. Prentice-Hall, 1971.

Stoer, J.; Bulirsh, R. Introduction to Numerical Analysis.
New York: Springer-Verlag, 1980.

Computer Programming Darnell, Peter A.; Margolis, Philip E. C: A Software
Engineering Approach. Springer-Verlag, 1990.

!

����
���!

�������"�����

This chapter covers the following information:

• Starting VisSim

• Exploring the VisSim window

• Choosing commands and using
dialog boxes

• Creating block diagrams

• Opening block diagrams

• Undoing an editing action

• Repainting the screen

• Saving block diagrams

• Previewing and printing block
diagrams

• Setting up VisSim

• Quitting VisSim

�
��
����������
The table below describes the start-up methods for Professional VisSim and Micro-
VisSim. You can customize how VisSim starts up by editing the start-up command
line, as described on page 263.

Platform Start-up method

Windows 3.1+ Start up the Program Manager; then double-click on
the VisSim icon in the VisSim group window.

Windows 95 and Windows NT Click on Start > Programs > VisSim; then double-
click on the VisSim icon.

����
���!

�	�
	�
���	��

#

/ ��	�����
����������,���	,
When you start VisSim, a new, empty block diagram, like the one shown below, is
automatically created for you.

Title bar: Lists the application name and currently opened block diagram. Unnamed
diagrams are titled Diagram1. The title bar also contains the Minimize, Maximize,
and Close buttons. The Minimize button shrinks the VisSim window to an icon; the
Maximize button enlarges the VisSim window to fill your entire screen; and the
Close button closes the VisSim window.

Menu bar: Lists the six basic menus available in VisSim: File, Edit, Simulate,
View, Blocks, and Help. If you have installed a VisSim add-on, for example
VisSim/Analyze, additional menus may appear on the menu bar. Clicking on a menu
name displays a list of VisSim commands or blocks.

Tear-away toolbars: The buttons in the toolbars represent commonly used VisSim
commands. To select a toolbar button, click on it.

Each cluster of buttons represents a tear-away toolbar. For example, the Main
toolbar consists of the following buttons:

There are eight tear-away toolbars: Main, Sim Control, Annotation Blocks,
Arithmetic Blocks, Boolean Blocks, Consumer Blocks, Producer Blocks, and User.
By default, the Main and Sim Control toolbars appear when you start up VisSim.
These toolbar buttons are described on the next page.

Title bar

Work area

Tear-away toolbars
Menu bar

Scroll bars

Diagram tree

Status bar

����
���!

�	�
	�
���	��

�

A File > New command H Edit > Add Connector command

B File > Open command I Edit > Remove Connector command

C File > Save command J Simulate > Go command

D File > Print command K Simulate > Stop command

E Edit > Cut command L Simulate > Single Step command

F Edit > Copy command M Simulate > Continue command

G Edit > Paste command N Help command

As their names imply, the Annotation, Arithmetic, Boolean, Consumer, and
Producer Blocks toolbars represent blocks in each of the corresponding categories.
For descriptions of these blocks, see Chapter 12, “Block Reference.” The User
toolbar allows you to create your own toolbar buttons. For more information, see
page 265.

If a toolbar restricts your view of your work, drag on its background to move it to a
new location, or click on its background to display a menu from which to close it.
You can also use the View > Toolbar command to close toolbars. For more
information, see page 264.

Dimmed toolbar buttons
Sometimes, when a toolbar button is dimmed, it is because the last cursor
position was in the left window pane. Click the mouse anywhere in the right
window pane to activate all available toolbar buttons.

Status bar: Provides simulation information about the current diagram, including
the block count, simulation range, integration algorithm, step size, and implicit
solver. When you run a simulation, the elapsed simulation time is also displayed.

Displaying menu command and toolbar descriptions in status bar

When you drag the mouse over a menu, menu command, or toolbar button,
VisSim displays a brief description of the item in the status bar.

You can show or hide the status bar at any time using the View > Status Bar
command.

A B C D E F G H I J K L M N

����
���!

�	�
	�
���	��

(

Scroll bars: Pans the current viewing window. There are three ways to pan with the
scroll bars. Click on the scroll arrows to scroll in small increments; click on the
scroll bar to scroll in screen increments; or drag the scroll box to a location on the
scroll bar that approximates a location in the block diagram.

You can show or hide the scroll bars at any time using the Edit > Preferences
command, as described on page 264.

Auto-panning

Whenever you drag a block or draw a wire beyond the visible portion of the
working area, VisSim will automatically scroll the work area.

Diagram tree: The VisSim window is divided into two panes. The left pane
displays a diagram tree; that is, an outline of the diagram’s compound blocks. At the
top of the diagram tree is the Block Diagram icon, which represents the highest level
of the currently opened block diagram. Its name appears next to the icon.

Beneath Block Diagram are the names of the compound blocks encapsulated in the
block diagram. You can expand and collapse the diagram tree to display more or less
detail by clicking on the plus or minus signs that appear next to the diagram and
compound block names.

Whatever you select in the diagram tree is displayed in the right window pane. For
example, if you select Block Diagram, the top level of the block diagram is
displayed in the right window pane. You can jump to a specific compound block
without wading through block diagram hierarchy by simply selecting the compound
block name in the diagram tree.

If the diagram tree takes up too much space or if you cannot see all the hierarchical
information in the tree, you can change its width by dragging its right edge.

��		������	������
You can choose menu commands using the mouse or the keyboard. To choose a
menu command with the mouse, click on the menu, then click on the command. To
choose a menu command with the keyboard, press ALT to activate the menu bar, then
press the key corresponding to the underlined letter in the menu, and finally press the
key corresponding to the underlined letter in the command.

����
���!

�	�
	�
���	��

%

For commonly used menu commands, you can either:

• Press shortcut keys, which are listed on the menu to the right of the commands.
For example, press CTRL+C to execute Edit > Copy.

• Press a corresponding toolbar button. For example, press to execute
Simulate > Go.

If a menu command is dimmed, it is unavailable for use.

Missing dialog boxes
If you choose a command with an ellipsis (for example, the File > Print
command and the dialog box for the command is not displayed, click the
mouse anywhere in the right window pane and re-select the command.

Ellipsis indicate that a
dialog box is displayed.

A check mark indicates that the
command is turned on.

����
���!

�	�
	�
���	��

+

����������	��3	 ��
VisSim uses dialog boxes to gather and display information about a command or
block.

Tab: Allows similar options to be grouped together. When you click on a tab, a
corresponding property sheet is brought to the front.

Check box: Sets or clears a particular option. When a �appears in the box, the
option is activated.

Drop-down list box: Provides a list of several options. Click on the DOWN ARROW

to select from a list of options.

Text box: Allows you to enter text strings. Move the pointer over a text box until it
changes into an I beam; then type in the text.

Command button: Causes an action to happen. Command buttons with ellipsis
invoke another dialog box. Command buttons with a darkened rim are the default
action. You can press the ENTER key to execute the default command button.

Tab

Check box

Drop-down list box

Text box

Scrolling list box

Command button

Display box

����
���!

�	�
	�
���	��

.

Scrolling list: Allows you to select from a list. Click on the scroll bar, scroll box, or
scroll arrows to scroll through the list.

Display box: Provides a visual representation of your selection.

Radio button: Used to present two or more mutually exclusive options. You must
pick one of the choices by clicking on it. When a black dot appears in the radio
button, it is selected.

����
����������

�����������,�3�	����������
To open a new diagram, choose the File > New command, or click on in the
toolbar. If you’re working on a different diagram and haven’t yet saved your
changes, VisSim prompts you to save them, then creates a new diagram. VisSim
temporarily names the diagram Diagram1. The first time you attempt to save it,
VisSim asks for a new name.

When you begin working on a new diagram, you usually start by setting up the page
with the File > Page Setup command. As you choose options in the Page Setup
dialog box, a sample of your selections is displayed in the top right-hand corner of
the dialog box.

Radio button

����
���!

�	�
	�
���	��

1

Orientation: You have the choice of Portrait or Landscape. Activate Portrait for a
page that is taller than it is wide. If you want the opposite, activate Landscape.

Margins (Inches): The margins control the distance between diagram elements
(blocks and wires) and the edge of the paper. VisSim does not display margins
unless you are in print preview mode. In this mode, they appear as blue, nonprinting
lines. Headers and footers, if specified, appear inside the margins.

Paper: Click on the DOWN ARROW in the Size box and select a standard paper size
from the list; then click on the DOWN ARROW in the Source box to select the paper
source (that is, the tray the printer uses to print the diagram).

Fit Diagram to Page: When Fit Diagram to Page is activated, VisSim prints each
level of the block diagram on a separate page. When necessary, VisSim reduces
diagram text so the level will fit on a single page within the specified margins.
Because VisSim prints each level individually with the minimal reduction possible,
the levels of a multi-level diagram may be sized differently.

VisSim may not be able to print extremely large block diagrams when Fit Diagram
to Page is activated. In these cases, VisSim gives you the opportunity to abort the
print operation. If you choose to continue printing, VisSim prints as much of the
diagram as will fit on the page.

Tile Printed Page for Large Diagrams: Tile Printed Page for Large Diagrams
causes VisSim to print each level using as many pages as necessary to print it
without resizing. The margin settings are honored for each page.

Header and Footer: You can create headers and footers by entering text in the
Header or Footer box. To view headers and footers, you must be in print preview
mode. Headers and footers appear within the established page margins on each
printed page of the diagram.

����
���!

�	�
	�
���	��

-

Using fields to enter header and footer information
By using fields, you can automatically insert information into a header or
footer. For example, you can use fields to insert the file name of a diagram,
the date the diagram was created, and so on.

To enter a field, click on the DOWN ARROW in the Header or Footer box and
select one or more fields from the list. When you select a field, it appears as
a field code in the Header or Footer box.

Field Field code

File name $f

File path $F

Block path $H

Date $D

Integration method $I

Optimization $O

Page number $p

Range $G

Step size $S

Left justify $L

Center $C

Right justify $R

Using File > Print for page setup
You can use the File > Print command to reset the orientation, paper size,
paper source, tiling, and fit-to-page options.

����
���!

�	�
	�
���	��

!7

4����������� ��
����3�	����������
You can easily open any of the last 12 block diagrams you worked on. When you
click on the File menu, VisSim displays their names at the bottom of the menu.

To open any block diagram, choose the File > Open command. If another diagram is
currently opened and contains unsaved changes, VisSim asks you if you want them
saved before it closes the diagram and displays the File Open dialog box.

When you assign a title to a block diagram using the Diagram Information
command, the title appears in the File Open dialog box when you select the block
diagram.

� To open a block diagram

1. Do one of the following:

• From the toolbar, choose .

• Choose File > Open.

2. In the File Name box, type or select the name of the block diagram you want to
open. If you do not see the block diagram you want, select a new drive or
directory.

3. To open the block diagram for viewing only, activate the Read Only parameter.
Although you can edit the block diagram, you must save the diagram under a
new name to retain your edits.

4. Click on the OK button, or press ENTER.

���	����������
������
�	�
If you make a change to a block diagram then decide against the change, use the
Edit > Undo command to erase it. If the Undo command is dimmed, the effect of the
command cannot be undone.

9�����
����
���������
Choosing Repaint Screen under the Edit menu redraws blocks and wires, and clears
the screen of remnants left over from earlier VisSim manipulations.

����
���!

�	�
	�
���	��

!!

��&������3�	����������
When you open a block diagram, VisSim reads the diagram into your computer’s
memory. As you work on the diagram, the changes you make are temporary. To
make the changes permanent, you must save them to disk.

Retaining diagram appearance on different graphic resolutions
If you activate Snap To Grid under Preferences in the dialog box for the
Edit > Preferences command, VisSim saves block positions in units of ½
the average character size of the currently selected font. This results in a
more consistent appearance of the block diagram over different graphic
resolutions.

� To save an existing block diagram

• Do one of the following:

• From the toolbar, choose .

• Choose File > Save.

You can use File > Save As to save the block diagram under a new name or to a
different directory or device. This command comes in handy when you want to alter
the current diagram but keep its original version.

)��&��,����3�2	�������
���
Use the File > Print Preview command to display a block diagram as it will look
when printed. Headers and footers, if specified, appear at the top and bottom of the
pages according to the specifications established with the File > Page Setup
command. Similarly, margins, if specified with File > Page Setup, are displayed in
nonprinting, blue ink.

You can zoom in and out of the page using the Zoom buttons in the Print Preview
toolbar.

)���
���
The File > Print command lets you choose a printer and select printing options, such
as the number of copies, the layers to be printed, and so on.

� To print a block diagram on Windows

• Do one of the following:

• From the toolbar, choose .

����
���!

�	�
	�
���	��

!#

• Choose File > Print.

� To set printing options

1. Do one of the following:

• From the toolbar, choose .

• Choose File > Print.

2. Do one or more of the following:

To print Do this

Multiple copies In the Copies box, enter a number.

The current level of the diagram Under Print Range, activate Current Level.

The current level and below Under Print Range, activate Current Level and
Below.

All levels of the diagram Under Print Range, activate All.

Each level of the block diagram
on a separate page, and when
necessary, reduce diagram text
so the level fits on a single page

Activate Fit to Page. Because VisSim prints each
level with the minimal reduction possible, the
levels of a multi-level diagram may be sized
differently.

VisSim may not be able to print extremely large
block diagrams when Fit to Page is activated, In
these cases, VisSim gives you the opportunity to
abort the print operation. If you choose to continue
printing, VisSim prints as much of the diagram as
will fit on the page.

Each level using as many pages
as necessary to print it without
resizing

Activate Tile Pages. The margin settings are
honored for each page.

A version of the block diagram
to a file to be printed at a later
date or to be used in another
program

Activate Print to File and then click on the OK
button, or press enter. In the ensuing dialog box,
specify a name for the block diagram you want to
print.

Selecting a printer: The currently selected printer appears in the Printer box when
you choose the File > Print command. To select a different printer, choose the Setup
command button. If the printer you want to use is not listed, you must install the
printer driver software on your system via the system Control Panel. To invoke the
system Control Panel from VisSim, use the File > Printer & System Config
command; then see the Microsoft Windows User’s Guide for installation procedures.

����
���!

�	�
	�
���	��

!�

Selecting additional printing options: You can also specify a paper size,
orientation, and paper source for the printed diagram by clicking on the Setup
command button. The selections you make here override selections you made
previously with the File > Page Setup command.

��

�������
������������&��	����

You can customize VisSim to suit the way you work. You can, for example, use
commands in the View menu to change the color of the work area, plotting area, and
wires, specify diagram fonts, and switch between presentation modes. Other
preferences are set with the Edit > Preferences command. These include coloring
compound blocks, alternating between black and white, and color displays, and
using training mode.

For more information on setting up the VisSim environment, see page 266.

/ �
����������
When you’re finished working and decide to exit VisSim, use the File > Exit
command, or press ALT+F4 to end your VisSim session. VisSim checks that all your
work has been saved. If there are any unsaved changes, VisSim asks if you want
them saved before exiting.

!%

����
���#

����
�������

������������$�����
"�	���

This chapter covers the following information:

• Inserting blocks

• Setting up block properties
and initial conditions

• Wiring blocks

• Positioning, hiding, deleting, and
coloring wires

• Using variables to pass signals

• Manipulating connector tabs

"�	���3�����
In VisSim, you build system models in the form of block diagrams. Blocks are your
basic design component. Each block represents a specific mathematical function.
The function can be as simple as a sin function or as complex as a 15th order transfer
function.

����
���#

������	���

���	��
���
���
�	�	��
������

!+

������	2�3�	���
VisSim offers over 90 blocks for linear, nonlinear, continuous, discrete-time, time
varying, and hybrid system design. Blocks are categorized under the Blocks menu as
follows:

• Animation

• Annotation

• Arithmetic

• Boolean

• DDE

• Integration

• Linear Systems

• Matrix Operations

• Nonlinear

• Optimization

• Random Generator

• Signal Consumer

• Signal Producer

• Time Delay

• Transcendental

In addition, VisSim supplies three special-purpose blocks: ����
, �������	
�, and
���������	
�.

Custom blocks
If your design requirements extend beyond the blocks supplied by VisSim,
you can create custom blocks in C, Fortran, or Pascal, as described in
Appendix B, “Extending the Block Set.”

���
�2�����3�	������
�
When you insert a block into a diagram, various symbols and text appear on it.

Block name or symbol denoting its function.

Triangular-shaped connector tab through
which signals, or data, enter or exit the block.

Connector symbol,
which indicates an
action applied to the
input signal, a condition
of the input signal, or a
signal identifier.

����
���#

������	���

���	��
���
���
�	�	��
������

!.

You can display additional information on the blocks in your diagram using the
View > Block Labels command, as described on page 267.

����
����3�	���
You insert blocks into a diagram by selecting them from the Blocks menu and
placing them in the work area. When you click on the Blocks menu, a list of blocks
and block categories appears. Block categories are depicted by filled triangles (�).
When you click on a block category, a cascading menu appears listing the additional
blocks.

� To insert a block from the Blocks menu

1. Choose Blocks from the menu bar.

2. Point to the block category and click the mouse. For example, point to
Nonlinear and click the mouse to display the nonlinear blocks.

3. Point to a block and click the mouse. For example, point to ��
�������� and
click the mouse to choose the ��
�������� block.

The Blocks menu closes and a rectangular box appears with the pointer
anchored in the upper left-hand corner of the box.

4. Point to the location in the diagram where you want to insert the block and click
the mouse.

��

�������3�	�����	���
�����������
�����	���
�	��
Most blocks have user-settable properties associated with them that allow you to set
simulation invariant parameters of the blocks’ functions. You define and change
property values for a block through its Properties dialog box. When you change a
property while the simulation is running, VisSim immediately updates the simulation
to reflect the change. Initial conditions, which are supplied to the system at the start
of a simulation, are also set in the blocks via their Properties dialog boxes.

� To set up block properties

1. Choose Edit > Block Properties.

2. Point to the block whose parameters you want to define or change and click the
mouse.

3. In the Properties dialog box, enter or select the new parameter values and
options, and then choose the OK button, or press ENTER.

����
���#

������	���

���	��
���
���
�	�	��
������

!1

Shortcuts for accessing Properties dialog boxes
A shortcut for accessing Properties dialog boxes for most blocks is to click the
right mouse button over the block. For ����
�, compound, ����
, �����,
���������	
�, and ���	���� blocks, hold down the CTRL key while you
click the right mouse button to access their Properties dialog boxes.

/�
����������������
�
When entering numeric data, VisSim displays values greater than 106 or less than
10-6 in exponential notation. VisSim uses the letter “e” to indicate exponential
notation; however, on input, it also recognizes the letter “E.” For example, you can
enter 6,000,000 in the following ways: 6e6 or 6E6.

/�
���������
���
���� ������	��
Most numeric block parameters can be expressed using the arithmetic operators “+,”
“-,” “*,” “/” and the usual rules of precedence. For example:

2 * (5 + 4) = 18

2 * 5 + 4 = 14

/�
��������� ������	��
VisSim also recognizes C expressions for numeric data. This means you can build
elementary mathematical functions using acos, asin, atan2, cos, cosh, exp, fabs, log,
log10, pow, sin, sinh, sqrt, tan, and tanh. For example, if you enter pow (2,3) to the
Gain parameter on the ��	� block, VisSim calculates 8. VisSim also interprets the
universal constant pi as π.

Learning C
If you are unfamiliar with the C language and want to learn how to enter
mathematical functions in C format, see C: A Software Engineering Approach,
(P. Darnell and P. Margolis, Springer-Verlag, 1990).

����
���#

������	���

���	��
���
���
�	�	��
������

!-

�	�
�	������
������3���	2����������������2����
��������
����
�
Numeric block properties are always calculated in up to 15 significant decimal
digits; however, you have the choice of displaying them in up to 6 or 15 significant
decimal digits. The High Precision Display option under Preferences in the dialog
box for the Edit > Preferences command controls the display.

$������3�����
By wiring blocks together, VisSim is able to pass signals among blocks during a
simulation. Signals are simply data. Input signals (xn) represent data entering blocks;
output signals (yn) represent data exiting blocks.

Wireless transmission of signals
A ���	���� block lets you name and transmit a signal throughout a block
diagram without using wires. Typically, you use a ���	���� block for
system-wide variables or signals that would be laborious or visually messy
to represent as wires. For more information, see page 129.

������	2�,����
VisSim offers two types of wires:

• flexWires

• vector wires

A flexWire is a thin wire that allows a single signal to pass through it. A vector wire,
on the other hand, is a thick wire that contains multiple flexWires. Typically, you
use vector wires when performing vector or matrix operations, or to reduce wiring
clutter at top-level diagram design.

A check activates 15
significant decimal digit
display.

����
���#

������	���

���	��
���
���
�	�	��
������

#7

The table below lists the blocks that accept vector wires:

Block category Block name

Annotation 	�
��, �������
���, ���	����, ����
������,
�	���
�	�	
���

Arithmetic ���, ��, �, �, ���, �
�����, ��	�, �
���, �	��,
����	�������	
�, ��	�
�����	
�

Matrix Operations ��!!��,

���

���, !!�, 	!!�, 	������, ����	��",
������
��, ����

Nonlinear ����, �����

You can manually bundle and unbundle flexWires using the �������
��� and
����
������ blocks.

$�����������
You attach flexWires and vector wires to blocks through their connector tabs. Once
you have attached a wire to a block, VisSim maintains the connection even as you
move the block around the screen.

When you wire blocks, the following rules are in effect:

• Wires can only be drawn between an input and output connector tab pair. The
triangular shape of the connector tab lets you easily distinguish inputs from
outputs.

• Input connector tabs can only have one wire attached to them; output connector
tabs can have any number of wires attached to them. To change the number of
connector tabs on a block, follow the procedures on page 23.

• If you draw multiple wires between two blocks, VisSim automatically skews
them.

$������3�	����
	��
���
� To wire together blocks

1. Point to a connector tab on one of the blocks to be wired. The pointer becomes

an .

2. Hold down the mouse button and drag the pointer over the connector tab on the
destination block.

����
���#

������	���

���	��
���
���
�	�	��
������

#!

As you drag the pointer, VisSim generates a colored line, which represents the
wire. Because VisSim draws lines vertically and horizontally, the path of the
line may not mimic the path of the cursor.

3. Release the mouse button.

'�
	��
��������	����
�����	����
�	��
You can control how close the pointer must be to a connector tab to automatically
complete a connection with the Auto Connect Radius option under Preferences in
the dialog box for the Edit > Preferences command.

)	��
�	�����,����
Using �	���
�	�	
��� blocks, you can perform a connect-the-dot method of
wiring. That is, you insert �	���
�	�	
��� blocks and then manually route the
wire through them. Since you control the placement of the �	���
�	�	
���
blocks, it’s easy to draw a precise wiring path.

Additionally, because �	���
�	�	
��� blocks do not take any additional
computation time, you won’t see a decrease in performance during a simulation.

Both flexWires and vector wires can by routed through �	���
�	�	
��� blocks.

�	�	�����,����
By default, wires are drawn in black. You can, however, change the default color
using the View > Colors command, as described on page 267.

You can also apply color to specific wires by assigning a connection class to the
corresponding connector tabs. This wire coloring method is described on page 24.

Enter a value in
inches

����
���#

������	���

���	��
���
���
�	�	��
������

##

<������,����
When you activate display mode with the View > Display Mode command, VisSim
hides all wiring. Typically, you activate display mode when you want to display a
control or instrumentation panel without the underlying connections, or when you
want to view an animation.

*���
����,����
You delete a wire by detaching it from an input connector tab. Just point to the tab
and hold down the mouse button as you drag the pointer away from the tab. When
you release the mouse button, VisSim erases the wire.

�	����
	��
�3�3�����
All blocks that operate on signals have connector tabs. VisSim distinguishes
between input and output connector tabs. Input connector tabs enable signals to enter
a block; output connector tabs enable signals to exit a block. The triangular shape of
the connector tab lets you easily see the direction in which the signals travel.

Some blocks have symbols on their connector tabs that indicate how the block acts
on the data or the type of data the block is expecting. For example, the “-” on the
����	�������	
� block means that the input is negated. See the descriptions of
the individual blocks in Chapter 12, “Block Reference,” for connector tab symbol
definitions.

'�������������	&�����	����
	��
�3�
You can add or delete connector tabs on most VisSim blocks. If you delete a
connector tab with an attached wire, the wire is also deleted.

Connector tabs on compound blocks
Because additional connector tabs are unconnected in compound blocks, make
sure you verify the input and output connections after you complete this
procedure.

� To change the number of connector tabs on a block

1. Do one of the following:

• From the toolbar, choose or .

• Choose Edit > Add Connector or Edit > Remove Connector.

����
���#

������	���

���	��
���
���
�	�	��
������

#�

2. Do one of the following:

To Do this
Add a connector tab Point to where you want the tab. The short black

line indicates tab placement. Then click the
mouse.

Delete a connector tab Point to the tab to be deleted. The selected tab has
a short black line over it. Then click the mouse.

3. Repeat step 2 for as many tabs that you want to add or delete.

4. Click the mouse on empty screen space to exit this command.

���	����
�������
��	����
	��
�3�
Except on � blocks, all unconnected inputs are fed zeros, by default. Unconnected
inputs on � blocks are fed ones.

��

�����	����
�	���������
Connection classes provide an easy method of organizing your calculations by name
and color. You assign connection classes through the Connector Properties dialog
box. To access this dialog box, double-click the mouse over a connector tab.

A class connection consists of a class name and corresponding color. The color is
applied to the wire attached to the connector. For example, you can assign the class
name PRESSURE to all connectors whose input and output signals relate to pressure
calculations. All wires entering or exiting those connectors would then be displayed
in the same color.

� To assign a class

1. Point to the connector tab to be classified. The pointer turns into an upward
pointing arrow.

2. Double-click the mouse.

����
���#

������	���

���	��
���
���
�	�	��
������

#(

3. In the Class Name box, enter a name, or click on the DOWN ARROW to select an
existing name.

4. In the Color box, click on the DOWN ARROW and select from the drop-down
color list.

5. Click on the OK button, or press ENTER.

� To change a class color

Changing the color of all the connections in a particular class is simple to do in
VisSim.

1. Point to a connector tab whose class color you want to change. The pointer turns
into an upward pointing arrow.

2. Double-click the mouse.

3. In the Color box, click on the DOWN ARROW and select from the drop-down
color list.

4. Click on the OK button, or press ENTER.

9��
���
�����	����
�	���
	����������3���
If you want to prevent wires from being drawn between connector tabs of different
classes, activate the Restrict Connections to Class Members box in the Connector
Properties dialog box.

*�����������	����
	��
�3���������22����
�&��,
The View menu’s Presentation Mode, Display Mode, and Data Types commands
have different affects on how connector tabs are presented. For information on these
commands, see page 266.

#%

����
����

'���������"�	���

This chapter covers the following information:

• Selecting blocks

• Moving and copying blocks

• Flipping blocks

• Aligning blocks

• Finding and replacing blocks

• Deleting blocks

�����
����3�	���
Once you have inserted a block into a block diagram, you will probably have to
select the block in order to manipulate it. When you select a block, VisSim
highlights it in black and outlines it in white.

When you select a compound block, all encapsulated blocks are implicitly selected.

� To select a block

1. Point to the block.

2. Hold down the SHIFT key and click the mouse.

����
����

������	��
������

#+

'���������
���
A quick way to select one or more blocks is to use area select , which lets you draw
a bounding box around the blocks you want to select. If any part of a block is
contained in the bounding box, it is automatically selected.

� To perform an area select

1. Point to one corner of the area you want to select.

2. To anchor the corner, hold down the mouse button.

3. Drag the pointer until the box encloses all the blocks you want selected.

4. Release the mouse button.

�	����������
���
This action automatically selects all unselected blocks at the current level, and
unselects all selected blocks at the current level.

� To toggle select blocks

1. Point to empty screen space.

2. Hold down the SHIFT key and click the mouse.

�������
����3�	���
You can easily cancel the selection of individual blocks.

� To unselect blocks

1. Point to the selected block.

2. Hold down the SHIFT key and click the mouse.

When blocks are unselected they are returned to a normal video display.

:	&���������	������3�	���
Moving and copying blocks are common operations you’ll perform in VisSim. Like
many operations, there are several ways to move and copy blocks. For instance, you
can move blocks by dragging and dropping them into place or you can cut them to
the Windows Clipboard. From there, you can paste them back into your diagram or
into another VisSim diagram. You can also paste them into other Windows-based
applications.

����
����

������	��
������

#.

9�����2	���	&���������	������3�	���
The following rules are in effect when you’re moving and copying blocks:

• Moved and copied blocks retain the parameter values of the original blocks.

• Moved and copied blocks retain their internal wiring. This means that wires
connecting blocks within the group of copied or cut blocks are retained.

• Moved and copied blocks lose their peripheral wiring. This means that wires
connecting blocks in the group of blocks being copied or cut to other blocks are
not retained.

• When moving or copying a compound block containing a global ���	����
block with input, VisSim appends a number to the ���	���� block name to
keep it unique.

*����������	�����
���
An easy way to move or copy blocks within the current level of the diagram is with
drag-and-drop editing. If you’re moving or copying blocks to another level in the
diagram, or to a different block diagram, you have to use the Edit menu’s Cut, Copy,
and Paste commands.

� To move a single block using drag-and-drop editing

1. Point to the block to be moved and hold down the mouse button.

2. Drag the block to the new location in the diagram.

3. Release the mouse button.

� To move a group of blocks using drag-and-drop editing

1. Select the blocks to be moved.

2. Point to one of the selected blocks and hold down the mouse button.

The selected blocks are replaced with an empty box.

3. Drag the box to the desired location in the diagram.

4. Release the mouse button.

� To copy a single block using drag-and-drop editing

1. Point to the block to be copied.

2. Press CTRL+SHIFT while you simultaneously click the mouse.

As you move the pointer away from the block, a box appears. The box shows
where the copy will be placed.

����
����

������	��
������

#1

3. Point to the location where you want the copy inserted and click the mouse.

If you want to copy a group of blocks, see the description below.

�	���������

������������
����3�	���
The Copy, Cut, and Paste commands use the Windows Clipboard to transfer blocks
to another block diagram level or to a different block diagram. You can also use the
Clipboard to paste blocks into other applications.

The Clipboard can only hold one selection of cut or copied blocks at a time. If you
place a new selection in the Clipboard, it overwrites whatever was already there.

� To copy or move selected blocks within VisSim

1. Select the blocks.

2. To copy the blocks, do one of the following:

• From the toolbar, choose .

• Choose Edit > Copy.

• Press CTRL+C.

3. To move the blocks, do one of the following:

• From the toolbar, choose .

• Choose Edit > Cut.

• Press CTRL+X.

At this point, the blocks are in the Clipboard.

4. Move to where you want the Clipboard contents inserted. If the location is in a
different block diagram, use the File > Open command to open the proper block
diagram and do one of the following:

• From the toolbar, choose .

• Choose Edit > Paste.

• Press CTRL+V.

A rectangular box appears.

5. Position the box where you want the Clipboard contents inserted.

6. Click the mouse.

If blocks and wires overlap as a result of this procedure, you can easily reposition
them using drag-and-drop editing.

����
����

������	��
������

#-

�	������3�	������
	�	
�����������
�	��
You can use the Copy command to copy pictures of blocks into other Windows-
based applications. Common Window elements (like title bars, control-menu boxes,
scroll bars, and minimize and maximize boxes) are not copied when you use the
Copy command.

Using the PRINT SCRN key to copy block diagrams
You can alternatively press PRINT SCRN to copy a picture of the entire
VisSim window into the Clipboard. From there, you can paste it into
another Windows-based application using the application’s paste
command.

6��������3�	���
By allowing you to flip blocks 180o, VisSim can present a more logical
representation of right-to-left signal flow. When you flip blocks, VisSim redraws all
flexWires attached to the blocks.

� To flip a block

1. Select the blocks to be flipped.

2. Choose Edit > Flip Horizontal.

3. Click the mouse on empty screen space to unselect the blocks.

'��������3�	����&��
������������	��5	�
����
The Snap to Grid parameter under Preferences in the dialog box for the Edit >
Preferences command forces blocks to stay on an invisible grid. When you create
block diagrams where you want blocks to line up horizontally or vertically, or where
you want them to be spaced equally, activate Snap to Grid. When you move a block
with Snap to Grid active, the block is forced to the nearest grid point. Blocks that
have been inserted into your block diagram before Snap to Grid is active are also
affected by this parameter.

����
����

������	��
������

�7

6���������������������3�	���
Using the Edit menu’s Find and Replace commands, you can search for certain
occurrences of blocks with user-defined names and text strings. These blocks
include:

• �
����� blocks

• compound blocks

• ��#, ��#����	��, and ��#���
 blocks

• ���
�� blocks

• 	��
�� blocks

• ����� blocks

• ������$� and ������%�� blocks

• ���	���� blocks

Once you find what you’re looking for, you can have VisSim change it to something
else. VisSim searches the entire block diagram for the search item, regardless of
your current location in the diagram.

6�������3�	���
When you choose the Find command, VisSim displays a dialog box you can use to
specify the block you want to find. If you want to search for variables, you can also
click on the DOWN ARROW next to the Find What box and select a variable from the
entries. All ���	���� blocks in the diagram are listed in the drop-down list.

Once VisSim finds the search item, you can make a change in the diagram and then
continue the search by choosing the Find Next button. The dialog box stays open so
you can edit the diagram. To move the dialog box out of the way, drag on its title
bar.

����
����

������	��
������

�!

� To find a block

1. Choose Edit > Find.

2. In the Find What box, enter the search item. If you’re searching for a
���	����, you can also click on the DOWN ARROW next to the Find What box
and select from the variables list.

3. Select any option you want to control the search.

To Select

Find whole words and not parts of words. Find Whole Word Only box.

Find item with same capitalization as the
word in the Find What box.

Match Case box.

Find only ���	���� block names. Match Variables Only box.

Find only the defining instance of a
���	����; that is, the ���	���� block
with an input connection.

Match Variable Definitions Only box.

4. Choose the Find Next button. When VisSim finds a match, it highlights the
block in black.

5. To cancel a search or close the dialog box, choose the Cancel button.

9���������3�	���
You use the Replace command to replace the names of the blocks you find. You
specify entries in the Replace dialog box in the same way that you do in the Find
dialog box.

� To replace a block

1. Choose Edit > Replace.

2. In the Find What box, enter the search item.

3. In the Replace With box, enter the item to replace the search item.

����
����

������	��
������

�#

4. Select any option you want to control the search.

To Select

Find whole words and not parts of
words.

Find Whole Word Only box.

Find item with same capitalization
as the word in the Find What box.

Match Case box.

5. Choose the Find Next button. When VisSim finds a match, it highlights the
block in black.

6. Do one of the following:

To Select

Replace the block name and find
the next occurrence.

The Replace button.

Change all occurrences without
confirmation.

The Replace All button.

Leave the block name unchanged
and find the next occurrence.

The Find Next button.

7. To cancel a search or close the dialog box, choose the Cancel button.

*���
����3�	���
When your block diagram contains blocks you no longer need, you can delete them
using the Edit > Clear command or the DEL key. When you delete blocks, all wires
attached to the deleted blocks are also deleted.

� To clear selected blocks

1. Select the blocks to be cleared.

2. Choose Edit > Clear or press DEL.

��

����
���(

��

����������
�	��)�	���
���

The following information is covered in this chapter:

• Simulation range

• Simulation step size

• Real-time simulations

• Automatic simulation restarts

• Integration algorithms

• Minimum step sizes, maximum
truncation errors, and maximum
iteration counts for adaptive
integration algorithms

• Checkpointing

• Propagating integer types

• Selecting frequency units

• Generating random numbers

• Notification messages for end-
of-simulation, incomplete
wiring, nonintegral clock,
nonintegral delay, and numeric
overflow

��

�������
���������
�	�������
Setting up the simulation range involves choosing the start and end of the
simulation, specifying the step size of the integration algorithm, indicating whether
VisSim runs in real-time mode, and indicating whether VisSim automatically restarts
the simulation either with or without the last known system states.

� To access the Simulation Range options

1. Choose Simulate > Simulation Properties.

2. Click on the Range tab.

����
���(���
���	��

	�����	��
�������	��

�(

 The Range sheet in the Simulation Properties dialog box appears.

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

������
���9�������	���
������

The Range property sheet options are:

Auto Restart: For real-time control or training neural networks, where multiple
data sets must be fed into VisSim repeatedly, you can activate Auto Restart. This
parameter restarts and runs the simulation until one of the following conditions is
met:

• The signal in the ���
� or ��
� block goes to 1.

• You manually stop the simulation.

You can keep track of the number of the run by wiring a &���
��� ���	����
block into your diagram.

To retain the states of blocks each time VisSim automatically restarts a simulation,
activate the Retain States parameter, as described below. Blocks that are time based
(for example, Signal Producer blocks) are reset to their restart time. For a smooth
transition between auto-restart simulation runs, you need to remove the Signal
Producer blocks from your diagram. For instance, if your diagram contains a
�	���
	
 block, replace it with an 	�������
� block with its derivative set to the
sinusoidal frequency and feed it to a �	� block.

Retain States: For a smooth transition between simulation iterations, activate
Retain State. When activated, VisSim retains the states of the 	�������
�,
����������, �����!�������	
�, and ��	�����" blocks each time it restarts a
simulation.

����
���(

���	��

	�����	��
�������	��

�%

The Retain State parameter can only be activated when Auto Restart is already
activated.

Run in Real Time: With Run in Real Time, VisSim simulates in real-time mode,
which has the effect of retarding a simulation so that one simulation second equals
one clocked second. This mode comes in handy when a system is exhibiting rapidly
varying behavior. In real-time mode, the behavior can be slowed down and more
easily analyzed.

Typically, you use real-time mode for hardware-in-the-loop control situations. For
this, however, you also need the VisSim/Real-Time software and a PC D/A-A/D
card. The VisSim/Real-Time driver lets you configure different analog and digital
channels and insert them into a block diagram for reading and writing.

Start/End: Using Start and End, you can set independent variables that indicate
when VisSim starts and stops a simulation, as well as when VisSim starts and stops
logging data points in the Signal Consumer blocks wired into the block diagram.

You can also set defaults for the start and end, as described on page 41.

Step Size: The step size is the fundamental unit of integration. It indicates the
interval at which the integration algorithm computes the integral of the input
function and generates a data point in the Signal Consumer blocks wired into the
block diagram. You specify the step size in the Step Size box. The default is 0.05.

For adaptive integration methods (adaptive Runge Kutta 5th order and adaptive
Bulirsh-Stoer), you can also specify a minimum step size, as described on page 38.

Furthermore, you can also set a default step size for the non-adaptive integration
methods, as described on page 41.

��

������������
����
�	����
�	�
Setting up the integration algorithm involves choosing the algorithm, and, if you
choose an adaptive algorithm, specifying the minimum step size, error tolerance, and
iteration count.

� To access the integration method options

1. Choose Simulate > Simulation Properties.

2. Click on the Integration Method tab.

����
���(���
���	��

	�����	��
�������	��

�+

 The Integration Method sheet in the Simulation Properties dialog box appears.

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

������
���
�
����
�	��:�
�	����	���
������

VisSim provides seven integration algorithms — Euler, trapezoidal, Runge Kutta 2nd

order, Runge Kutta 4th order, adaptive Runge Kutta 5th order, adaptive Bulirsh-Stoer,
and backward Euler (Stiff) — of varying numerical accuracy for the numerical
integration of differential and difference equations.

Each algorithm provides a numerical approximation to continuous integration. The
approximation is based on a trade-off between speed of execution and accuracy.
Generally speaking, the more complex algorithms yield more stable and numerically
correct results; however, they also take longer to run.

For example, the integration of the absolute value of a sinusoid signal with a
frequency of 0.2 Hz is plotted below. The output of the ��� block is a sequence of
sinusoid positive half-cycles with a frequency of 0.4 Hz. Since the simulation range
is from 0 to 5 seconds, the output of the 	�������
�'block is the estimate area
under the curve of two positive half-cycles.

����
���(

���	��

	�����	��
�������	��

�.

While the differences due to the integration algorithms are negligible for this
example, more dramatic differences can be observed when comparing simulation
methods in diagrams containing differential equations.

A good rule of thumb, then, is to use the least complicated algorithm that provides
stable and correct results. To achieve this, start with the most complex integration
algorithm and work backwards to simpler algorithms until you see a noticeable
change in your results.

Setting a default integration algorithm
If you plan on using a particular integration algorithm a lot, you can set it as
the default, as described on page 41.

The Integration Method property sheet options are:

Euler: Evaluates once per simulation time step. This method is least affected by
singularities, and is fastest for moderate step sizes.

Trapezoidal: Evaluates twice per simulation time step.

Runge Kutta 2d order: Obtains second order accuracy. This method uses a
midpoint step derivative to calculate the final integration value. Specify the length of
the step in the Step Size box.

����
���(���
���	��

	�����	��
�������	��

�1

Runge Kutta 4th order: Obtains fourth order accuracy. This method evaluates the
derivative four times at each time step: once at the initial point, twice at sample
midpoints, and once at a sample endpoint. The final integration value is then derived
based on these derivatives.

Adaptive Runge Kutta 5th order: Obtains fifth order accuracy. This algorithm
automatically takes small step sizes through discontinuities in the input function and
large strides through smooth functions.

Adaptive Bulirsh-Stoer: Uses rational polynomials to extrapolate a series of
substeps to a final estimate. This algorithm is highly accurate for smooth functions.

Backward Euler (Stiff): Obtains efficiency for systems with high and low
frequencies. The other algorithms would require small step sizes to maintain
stability.

Min Step Size: The adaptive Runge Kutta 5th order and adaptive Bulirsh-Stoer
integration algorithms exert more control over the accuracy of the solution by letting
you specify a minimum step size. The step size is continually adjusted in order to
meet the error tolerance and iteration count criteria; however, it is never reduced
below the minimum step size. Thus, inaccurate results may be produced if the
minimum step size is too large, the error tolerance is too large, or the iteration count
is too small.

The default value for the minimum step size is 1e-006.

Max Truncation Error: When you choose an adaptive integration algorithm, you
can specify the maximum error between the results of two successive adaptive
iterations. VisSim uses the truncation error to determine the adaptive step size. The
larger the error you’re willing to tolerate, the larger the step size. The default value
for the maximum truncation error is 1e-005.

Max Iteration Count: When you choose an adaptive integration algorithm, you
can also specify the maximum number of times the integration algorithm will vary
its time step attempting to meet the maximum truncation error criterion. The default
value for the maximum iteration count is 5.

��

�������������
�	�����2�������
� To access the preferences options

1. Choose Simulate > Simulation Properties.

2. Click on the Preferences tab.

����
���(

���	��

	�����	��
�������	��

�-

The Preferences property sheet in the Simulation Properties dialog box appears.

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

������
���)��2����������	���
������

The Preferences property sheet provides options for checking for unconnected
blocks, checkpointing a simulation, selecting the frequency units, and more. The
property sheet options are:

Check Connections: Warns you at the start of a simulation if the diagram contains
unconnected blocks. Unconnected blocks are highlighted in red. A Warning dialog
box identifies the unconnected input tab and provides two choices:

• Abort or Retry Finishes checking the diagram and then stops the simulation.

• Ignore Finishes checking the diagram and then completes the simulation.

Checkpoint State: Saves a temporary copy of your block diagram “as is” at the
time you stopped the simulation. To do so, Checkpoint States must be activated
before you begin the simulation.

If you activated Checkpoint States, VisSim saves the current values of all system
parameters and block outputs, and elapsed simulation time when you stop the
simulation. If you close the block diagram and then re-open it, you can continue the
simulation from where you left off.

Checkpointing is useful for long simulations because it allows you to stop and save a
simulation in the event that you must shut down your computer for a lengthy period
of time.

Frequency Units: Sets the frequency units to either radians per second or hertz.

����
���(���
���	��

	�����	��
�������	��

(7

Notify Simulation End: Broadcasts an “End of Simulation” message to your
computer when the simulation completes.

Propagate Integer Types: Uses C semantics to propagate integer data types. For
example, if you add two integers, the result is an integer value.

Raise Real-Time Priority: Gives your process the higher priority to let you achieve
reliable real-time sampling without interruptions from other processes running
simultaneously. This option is for real-time control applications.

Random Seed: Generates numbers by a random process. The �����	�� and
��	!
�� blocks are affected by this option. That is, the numbers exiting these
blocks are derived from the value of Random Seed.

Typically, you use Random Seed when an input is required to be unpredictable. For
example, when modeling the descent path of an airplane, it is impossible to predict
the force or direction of the wind. Consequently, you represent it as a function of a
random number.

The value of Random Seed ranges from 0 to 65,536. The default is 0.

Altering the sequence of generated random numbers
VisSim generates the sequence of random numbers for each simulation
differently depending upon whether the Auto Restart parameter in the dialog
box for the Simulate menu’s Simulation Setup command is activated. When
Auto Restart is on, VisSim generates a new sequence of random numbers for
each simulation. Conversely, when it’s turned off, VisSim generates the
same sequence of random numbers for each simulation. To change the
sequence, you must explicitly enter a new Random Seed value at the start of
the simulation.

Warn Nonintegral Clock: Warns you if a pulse is chosen that is not an integral
multiple of the simulation step size. This option should always be activated;
otherwise, a simulation that inaccurately represents the system you’re modeling may
go undetected.

Warn Nonintegral Delay: Warns you if a delay is chosen that is not an integral
multiple of the simulation step size. This option should always be activated;
otherwise, a simulation that inaccurately represents the system you’re modeling may
go undetected.

Warn Numeric Overflow: Warns you if a �
����� block causes data truncation
resulting in the value loosing precision.

����
���(

���	��

	�����	��
�������	��

(!

��

����������
�	����2���
�
You can specify default settings for the range, integration algorithm, and fixed step
size for non-adaptive integration algorithms that are in effect whenever you create a
new block diagram or start a new VisSim session.

� To set simulation defaults

1. Choose Simulate > Simulation Properties.

2. Click on the Defaults tab.

 The Default property sheet in the Simulation Properties dialog box appears.

3. Make the selections you want to put into effect.

4. Click on the OK button, or press ENTER.

(�

����
���%

������
����"�	���*�������

The following information is covered in this chapter:

• Types of system simulations

• Controlling a simulation with Simulate menu commands, toolbar buttons, and
the Control Panel

• Dynamically modifying signal values

• Probing signal values

• Trimming a system

• Resetting error conditions

• Snapping system states

• Troubleshooting a simulation

������
�	��3�����
VisSim can simulate linear, nonlinear, continuous, and discrete systems. VisSim can
also simulate systems containing both continuous and discrete transfer functions, as
well as systems containing multi-rate sampling for discrete transfer functions.

When you initiate a simulation, VisSim first evaluates Signal Producer blocks, like
�
���� and �����, then sends the data to intermediate blocks that have both inputs
and outputs, like ��	�� and ����	�������	
��. Lastly, it sends data to Signal
Consumer blocks that have only inputs, such as ��
�� and ������.

����
���%���
	�����	��
�����
�	������

((

VisSim simulates a system according to:

• Simulation parameters set in the dialog box for the Simulate > Simulation
Properties command

• Initial conditions for the system set in the applicable blocks

If the status bar is turned on, VisSim displays current settings for the simulation
range, step size, elapsed simulation time, integration algorithm, and implicit solver.

�	�
���	������
���������
�	�
Because integration is a more numerically stable operation than differentiation, you
need to transform your ordinary differential equations into ones that use integration
operators.

To enter an ordinary differential equation in VisSim, first algebraically solve the
equation for the highest derivative. Then, in VisSim, insert the number of
	�������
� blocks that equals the order of the highest derivative. Most continuous
systems contain one or more differential equations. For example, if you’re solving a
third order differential equation, insert three 	�������
� blocks and supply the
equation for the highest order derivative as input to the first integrator block. The
output of the first integrator is:

d x

dt

n

n

−

−

1

1

which is the next lower order derivative. The output of the second integrator block
is:

d x

dt

n

n

−

−

2

2

and so on. The outputs of the lower order derivatives can be fed back into the
calculation of the highest derivative.

����
���%

	�����	��
�����
�	������

(%

������
�����������������������
The following example steps you through the process of converting a second order
differential equation into VisSim block diagram form. This example involves the
ubiquitous damped harmonic oscillator, where a mass M is suspended from the
ceiling by a spring-damper arm. The mass is attracted back toward the origin by an
elastic restoring force proportional to its vertical displacement and is damped by an
opposing force that acts in proportion to its velocity.

Based on Newton’s Second Law, the definition of the equation of motion for the
damped harmonic oscillator is:

M
d x

dt
Kx B

dx

dt

2

2
= − −

where:

d x

dt

2

2
 = acceleration

dx

dt
 = velocity

Because integration is inherently more numerically stable than differentiation, the
equation must be expressed in terms of integrals. By definition of the derivative:

()dx

dt

d x

dt
v

t
= +∫

2

20
0

and

()x
dx

dt
x

t
= +∫0

0

where:

()v 0 = initial velocity of the mass

()x 0 = initial starting position of the mass

����
���%���
	�����	��
�����
�	������

(+

Employing 1/s as the operator for integration, and making the initial conditions
implicit in 1/s, yields the following relationship:

x
s

dx

dt s

d x

dt
= 





=








1 1

2

2

2

The relationship can be expressed in VisSim block diagram form as:

A more concise representation of this relationship is:

The three ���	���� blocks hold the quantities d2x/dt2, dx/dt, and x at each instant of
time. The ���	���� blocks are actually extraneous, because the wires alone can
carry the data forward to the next block.

Returning to the original equation of motion and solving for the acceleration yields:






 −−=

dt

dx
BKx

Mdt

xd 1
2

2

To model this system in VisSim, wire the outputs of the x and dx/dt ���	����
blocks through two ��	� blocks (which represent K and B) and into a
����	�������	
� block, with inputs negated. By dividing the output of the
����	�������	
� block by M (which is represented by a constant block), you
produce d2x/dt2. Letting K = 5, B = 1, and M = 10, for example, results in the
diagram shown on the next page.

����
���%

	�����	��
�����
�	������

(.

This diagram represents a closed-loop system from which the values for position,
velocity, and/or acceleration can be displayed in a ��
� block, as was done here.
The initial conditions of starting position x(0) and velocity v(0) of M are specified
within the 	�������
� blocks preceding the respective ���	���� blocks.

Letting x(0) = 0 and v(0) = 1, and setting the simulation range from 0 to 20 and the
step size to 0.05 yields the following results:

Note that the characteristic decay that is observed depends on the parameters M, K,
and B. Different values for these quantities and initial conditions can be entered into
the appropriate blocks to simulate any system.

You can simplify the diagram by replacing the ���	���� blocks that denote x,
dx/dt, and d2x/dt2 with optional ����� blocks.

����
���%���
	�����	��
�����
�	������

(1

Other physical effects can now be added, such as static and sliding friction, or
external driving forces.

A coupled system can also be modeled by interconnecting two separate block
diagrams. This permits extremely complex systems to be modeled without the need
for a closed mathematical solution.

/�
�������	�
���	���
����
����2���2���
�	��
A transfer function is a ratio of polynomials in the Laplacian s operator that models
the ratio of the output signals divided by the input signals. There are two ways to
enter a transfer function in VisSim. The more common method is via the
�����!�������	
� block, which you use when entering coefficients as numeric
constants.

When the coefficients are polynomial constants, begin by defining the transfer
function in operator notation. The transfer function should be proper; that is, the
highest degree of the denominator polynomial m must be greater or equal to that of
the numerator n. The general transfer function representation is:

()
()

N s

D s

an sn an sn a s a

bm sm bm sm b s b
=

+ −
− + +

+ −
− + +

1
1

1 0

1
1

1 0

...

...

����
���%

	�����	��
�����
�	������

(-

You represent this in VisSim as follows:

This diagram represents the condition in which the numerator and denominator
degrees are equal (m = n). When the numerator is of a degree less than the
denominator, the output paths are removed from the left. For example, if n is two
less than m, the an and an-1 output paths would be removed.

Note also that for each kth polynomial term, you add an 	�������
� and a
corresponding ak, bk set of gains flow to the upper and lower ����	�������	
�
blocks in the diagram.

The second degree transfer function is:

()
()

N s

D s

a s b s c

d s e s f
=

+ +

+ +

2

2

The diagram for this transfer function is:

����
���%���
	�����	��
�����
�	������

%7

'������������
���������&����2	����
	��������������������
By modifying the damped harmonic oscillator, created earlier, to include an external
driving force f(t), you can create a system that contains a transfer function. An
illustration of the modified system is shown below:

In this system, a vertical draft is produced by a strong fan positioned below the mass.
This driving force sustains the motion of the damped oscillator and represents an
input to the system. The output is the instantaneous velocity v of the mass. To derive
the transfer function for this simple system, you will use the Laplace transform. The
modified equation of motion for this system is:

()M
d x

dt
Kx B

dx

dt
f t

2

2
= − − +

Accounting for non-zero initial conditions, the Laplace transform becomes:

() () () () () () ()Ms x s Msx M
dx

dt
Kx s Bsx s Bx F s2 0 0 0− − = − − + +

Regrouping the equation yields:

()() ()() () ()x s Ms Bs K x Ms B
dx

dt
M F s2 0 0+ + − − − =

Transfer function representation requires all initial conditions be equal to zero,
specifically:

() ()x
dx

dt
0 0 0= =

The equation reduces to:

()() ()x s Ms Bs K F s2 + + =

����
���%

	�����	��
�����
�	������

%!

whose transfer function is:

()
()

x s

F s Ms Bs K
=

+ +
1

2

Since velocity rather than displacement is the desired output, the substitution:

() ()V s s x s=

is made to produce the transfer function:

()
()

V s

F s

s

Ms Bs K
=

+ +2

The denominator remains unchanged; however, the numerator coefficients are
different. The block diagram becomes:

The non-zero initial conditions can be easily included by specifying their values on
each of the two 	�������
� blocks. For example, suppose that the spring was
initially stretched one inch. An initial condition of one would be placed on the
rightmost 	�������
�. Assuming an initial velocity of zero, the initial condition on
the leftmost 	�������
� would still be zero.

*�����
��
�������
���������
�	�
You can simulate models of discrete time systems using ��	�����",
�����!�������	
�, and ���������� blocks. These discrete blocks have built-in
samplers on their inputs and zero-order holds on their outputs.

You set the sample time of a �����!�������	
� and ���������� blocks in the
dT parameters of their Properties dialog boxes. The dT parameter sets the sample
time at which the blocks’ states are updated. The ��	�����" block has a Boolean
clock at its input to set the sample time.

����
���%���
	�����	��
�����
�	������

%#

Simulating multi-rate systems: Discrete time systems in VisSim can be formulated
as multi-rate systems. This means that a single model can contain blocks with
different sampling rates. This capability is particularly useful in the simulation of
discrete Multiple-Input-Multiple-Output (MIMO) systems. For a system with
significant differences in its time constants in some natural modes or control loops,
you can achieve improved performance by sampling different subsystems at
different rates.

To specify multi-rate subsystems, use different sample times in the corresponding
discrete �����!�������	
� or discrete ���������� blocks. The simulation time
step must be set to a value equal to or less than the smallest value of all the sample
times used in the discrete blocks.

/�
��������22��������0��
�	��
A difference equation (DE) is similar to an ordinary differential equation, but instead
of continuous functions, functions in a difference equation take on values only at
discrete instances of time. Just as the operator in an ordinary differential equation is
the integrator, the operator in the difference equation is the unit delay.

To understand how to represent a difference equation in block diagram form,
consider the following example of the trapezoidal integration algorithm in difference
equation form:

()
Y Y

dt R R
k k

k k= +
+

−
−

1
1

2

where:

R = input

Y = output

Here, dt is the fixed discrete update time and the subscript k and k-1 denote time in
integer multiples of dt. Thus:

()R R k dtk =

and

()()R R k dtk − = −1 1

����
���%

	�����	��
�����
�	������

%�

A DE is converted to a transfer function in terms of the Z operator by replacing

occurrences of Fk n− with ()F z n− . Thus:

()
()

()
()

Y Y z Y

Y Y z

R R z R

R R z

k

k

k

k

→ →

→

→ →

→

−
−

−
−

0

1
1

0

1
1

Performing the replacement and solving for
Y

R
 yields:

Y

R

dt z

z
= +

−

−

−2

1

1

1

1

Since transfer functions are conventionally expressed in positive powers of z, you
must multiply the right-hand side of the equation by z/z to produce:

Y

R

dt z

z
=

+

−2

1

1

To create a VisSim block diagram, the procedure is similar to that used for
continuous time transfer functions. However, the ��	�����" block replaces the
	�������
� block. The resulting block diagram becomes:

The continuous input signal, R, is made a discrete function by passing it through a
������(
�
 block to effectively sample and hold its value every time the trigger is
activated. The trigger is activated every dt seconds using the ��������	� block,
and must be fed into every ��	�����" block to synchronize the VisSim data flow.

����
���%���
	�����	��
�����
�	������

%(

<�3�������
���������
�	�
In VisSim, discrete and continuous time blocks can be used together in a model.
Such systems are called hybrid systems. In hybrid systems, the outputs of the
discrete blocks are held constant between successive sample times, and updated at
times that correspond to the specified discrete sample time. The outputs of
continuous blocks are updated at every time step. Similarly, the inputs to the discrete
blocks are updated at times that correspond to the discrete time interval while the
inputs to continuous blocks are updated at every time step.

Hybrid systems can also be multi-rate. To specify multi-rate subsystems, use
different sample times in the corresponding discrete �����!�������	
� or discrete
���������� blocks. For hybrid system simulation, the simulation time-step must be
set to a value equal to or less than the smallest value of all the sample times used in
the discrete blocks.

�	�
�	��������������
�	�
There are three ways to control a simulation:

• Using the Simulate menu Go, Stop, Continue, and Reset commands or
corresponding toolbar buttons

• Using the simulation Control Panel

• Specifying simulation parameters on the VisSim command line, as described on
page 263

Each way provides the same level of interactive control over the simulation. For
short simulations, however, you may have to wire a ��
� block into the diagram if
you plan on stopping and single stepping a simulation that has been started from the
command line.

�����	�
�	��)����
The Control Panel provides fast and easy interactive control over a simulation.

Go, Stop, and Cont pushbuttons: These buttons allow you to start, stop, and
continue a simulation. They are equivalent to the Go, Stop, and Continue commands
in the Simulate menu, and the , , and buttons in the toolbar.

����
���%

	�����	��
�����
�	������

%%

Step pushbutton: This button allows you to single-step through a simulation. Each
time you press the Step pushbutton, the simulation advances one time step. The Step
pushbutton is equivalent to button in the toolbar.

Reset pushbutton: When you’re single-stepping or proceeding normally through a
simulation, the Go pushbutton is replaced with the Reset pushbutton. If you click on
Reset, VisSim resets the system to its initial conditions.

� To activate the Control Panel

• Choose View > Control Panel.

�
��
������������
�	�
� To start a simulation

• Do one of the following:

• From the toolbar, choose .

• From the Control Panel, press the Go pushbutton.

• Choose Simulate > Go command.

�
	��������������
�	�
� To stop a simulation

• Do one of the following:

• From the toolbar, choose .

• From the Control Panel, press the Stop pushbutton.

• Choose Simulate > Stop.

�	�
���������������
�	�
� To continue a simulation

• Do one of the following:

• From the toolbar, choose .

• From the Control Panel, press the Cont pushbutton.

• Choose Simulate > Continue.

����
���%���
	�����	��
�����
�	������

%+

��������
���������������
�	�
� To single step

• Do one of the following:

• From the toolbar, choose .

• From the Control Panel, press the Step pushbutton.

9���

������������
�	��
	����
�����	���
�	��
� To reset

• Do one of the following:

• From the Control Panel, press the Reset pushbutton.

• Choose Simulate > Reset.

:	���	���	�
�	��������������
�	�

*������������	��2������������&�����
You can dynamically modify a signal value during a simulation using the slider
block. This block lets you set upper and lower bounds in one and 10 percent
increments.

� To modify a signal value

1. Insert and wire a ��	
�� block into your diagram.

2. Using the scroll bar, adjust the value to be applied to the signal.

3. As the simulation proceeds, re-adjust the value of the ��	
�� block as
necessary.

)�	3�����������&�����
There are two ways to probe signal values at each time step of a simulation:

To Do this

Monitor signals entering or exiting a
specific block

Hold down the right mouse button over a
connector tab on the block.

Monitor signal values emitted from
multiple blocks simultaneously

Wire
	����" blocks to the output connector
tabs of the blocks.

����
���%

	�����	��
�����
�	������

%.

��������������
��
VisSim’s ��)�
�� and �
�����	�� blocks can be used to trim a simulation to
begin at a desired non-zero point. This technique is especially useful for slow-
running simulations in which the interesting region lies later on in the trajectory. By
trimming the conditions at the interesting region, you save time.

The initial condition of the integrator can be set externally using a
����	�������	
� block. (The actual initial condition on the integrator is set to 0.)
The goal is to drive the derivative signal to zero on the first pass of the simulation by
adjusting the value of the unknown blocks, which is the integrator initial condition.

9���

�������	���	���
�	��
If a simulation fails as a result of a math fault — for example, a negative argument to
a log function — VisSim displays a dialog box stating the nature of the error and
highlights the offending block in red. To reset the error condition, point to the
offending block and click the right mouse button. If the offending block is
encapsulated within one or more compound blocks, each compound block is also
highlighted in red. Note that you’ll have to drill into highlighted compound blocks to
find the offending block.

If multiple blocks contain errors, use the Edit > Clear Errors command to clear all
the errors.

������������
����
�
��
When you snap states, VisSim overwrites the initial conditions of ��	�����"
blocks, 	�������
� blocks, �����$�������
�, �	�	��
$�������
�,
����������, and �����!�������	
� blocks with their current output states, and
renders their initial conditions irretrievable. Snapping states is useful when you want
to run a simulation to a stable operating point and, from there, experiment with the
system.

State values are saved in memory; to save them to disk, use the File > Save
command.

� To snap state values to memory

1. Run the simulation to a specific point of interest.

2. Choose Simulate > Snap States.

����
���%���
	�����	��
�����
�	������

%1

��	�3����		
���

$��
���	����
��	�,����
�������
�2���
�	��
	������
����
	��3�	����	�
����
����	�
����
���=
If the input function to an 	�������
� block contains discontinuities, use the
adaptive Runge Kutta 5th order or adaptive Bulirsh-Stoer integration algorithm.

<	,��	�
��
�3���5����������	������
����3���&�	�=
A simulation that exhibits an oscillating behavior that increases rapidly in amplitude
points to unstable integration settings. When this occurs, decrease the integration
step size or switch to an integration algorithm that yields more accurate results and
produces less accumulated errors over the course of the simulation, such as the
adaptive Runge Kutta 5th order or adaptive Bulirsh-Stoer integration algorithm.

For highly nonlinear systems or stiff systems, you should use backward Euler.

<	,�����
�������������������
�	��=
When speed is a factor, disconnect all Signal Consumer blocks at the currently
displayed level.

��
�������������,���
	�������2	���	����
��,�����=
A faulty simulation can be the result of incomplete wiring. VisSim automatically
assigns zeros to all unsatisfied connector tabs (except on ���	���� and � blocks)
before it begins a simulation. To ensure that all blocks are fully connected, activate
Check Connections in the dialog box for the Simulate > Preferences command.
When this parameter is activated, VisSim warns you at the start of the simulation if
the diagram contains unconnected blocks.

$���������2���3�����		�������������	��=
If you create a feedback loop that does not contain integration or delay blocks, it is
referred to as an algebraic loop. VisSim is not equipped to solve algebraic loops.
Hence, during simulation, VisSim flags the loop-head block in red and issues a
notification message. To fix the error, rework the loop to introduce a delay.

If you are trying to solve an implicit equation, see Chapter 7 “Solving Implicit
Equations,” for information on using ��)�
�� and �
�����	�� blocks.

%-

����
���+

���,����������
�	��

The following information is covered in this chapter:

• Displaying simulation data in customizable plots

• Displaying simulation data in customizable strip charts

• Using histograms, bar graphs, and needle gauges

• Creating animation

)�	
�
The ��
� block displays data in a two-dimensional time domain plot. You can
customize the plot and control how data is presented through the Plotting Properties
dialog box for the ��
� block.

• Choose between XY or frequency domain

• Select logarithmic scaling, fixed axis bounds, or a time axis scale

• Display signal traces as individual data points, line segments, or stepped line
segments

• Overlay signal traces with geometric markers

• Specify the number of data points to plot

����
���+����	��	��

	�����	���

+7

• Use crosshairs and grid lines to determine data point coordinates

• Overlap plots

You can also save simulation data to file in .DAT, .M, .MAT, and .WAV formats.

"�����
�����	�������	
�
When you wire a ��
� block into your diagram and run a simulation, the simulation
data is initially presented in time domain. All the signals are plotted on the Y axis;
the X axis represents time. As data points arrive to be plotted, VisSim dynamically
rescales plot bounds and connects the data points with line segments.

In the above plot, ball position and air friction are displayed as functions of time.
The peak ball position follows an exponential decay, governed by air viscosity. The
signals are distinguished by line patterns, a feature the ��
� block automatically
performs when displaying or printing on monochrome devices. To make the plot
more meaningful, signal labels and a title were also added.

��5��������	
�3�	��
You might want to change the size or shape of a ��
� block for better viewing. You
can expand it to full screen size with the Maximize button in the upper right-hand
corner of the block, or you can drag the plot’s borders or corners to adjust its size.

����
���+

�	��	��

	�����	���

+!

>		����
You can zoom in on data points to view them at a magnified size and zoom back out
to display them at their normal size. You can zoom in several times in a row for
greater magnification.

If the area you’re zooming in on does not contain at least one data point, the
magnified area will be blank.

� To zoom in

1. Point to one corner of the area you want to select.

2. To anchor the corner, hold down the mouse button and CTRL key
simultaneously.

3. Drag the pointer until the box encloses the area you want to magnify. A status
box in the lower left-hand corner of the plot displays the pointer position.

4. Release the mouse button and CTRL key.

� To zoom out

• Hold down the CTRL key and click the right mouse button over the plot.

�����������	
���	���
���
The Plot Properties dialog box controls how simulation data is presented.

� To access the dialog box

1. Choose Edit > Block Properties.

2. Click the mouse over the ��
�'block.

3. Select the plotting parameters. (See the descriptions below for information about
each parameter.)

4. Click on the OK button, or press ENTER.

4�
�	�����	���
������

The Option property sheet lets you choose between XY and frequency domain plots;
select logarithmic scaling, fixed axis bounds, or a time axis scale; display signal
traces as individual data points, line segments, or stepped line segments; and more.

����
���+����	��	��

	�����	���

+#

Fixed Bounds: Specifies the region of the plot you want to view by letting you
select the plotting bounds. When Fixed Bounds is activated, VisSim uses the values
for the X Upper Bound, X Lower Bound, Y Upper Bound, and Y Lower Bound
parameters in the Axis property sheet.

Frequency Domain: Obtains the frequency power spectrum through the use of the
Fast Fourier Transform (FFT) algorithm.

Do not obtain frequency power spectrum data until after you have run a simulation.
If you halt the simulation prematurely, the fidelity of the FFT is diminished.

Unexpected peaks
If your frequency domain plot produces unexpected peaks, check the
simulation step size to verify that your sampling rate is adequate for
obtaining accurate results. Then, based on the simulation step size and
range, check the Plotted Points parameter to verify that you are indeed
plotting each time step.

Truncate FFT Data To 2^n: When activated, this option truncates data down to
the nearest power of 2. If you do not activate this option, the data buffer is padded
with zeros to round up to the nearest power of 2.

This option can be turned on only when the Frequency Domain option is activated.

Over Plot, Plot Count, and Clear Overplot: When activated, Over Plot displays
the results of multiple simulation runs in a single plot. This allows for better insight
into how small changes can affect overall system performance.

You can select the number of overlapping plots by entering a number into the Plot
Count box. To clear all signal traces from a plot, click on the Clear Overplot button.

����
���+

�	��	��

	�����	���

+�

Geometric Markers and Marker Count: When activated, Geometric Markers
overlays signal traces with geometric markers (squares, diamonds, circles, and
triangles). These markers are particularly useful for monochrome displays and
printers.

By default, VisSim overlays each signal trace with 10 markers; however, if this is
not satisfactory, you can enter a new number in the Marker Count box.

External Trigger: Determines whether VisSim displays simulation data in the plot
based on the value of an external trigger. When activated, External Trigger causes
VisSim to place a round input connector on the ��
� block. When signal values
entering the external trigger are 1, simulation data is plotted; when signal values
entering the external trigger are 0, simulation data is not plotted.

XY Plot and X Axis: Together, XY Plot and X Axis let you use one input signal to
represent X coordinate generation. As time advances, the remaining input signals are
plotted relative to the X-axis signal.

In the XY plot above, ball position is plotted against air friction. At time 0, the ball
position is at 2 and air friction is at 0. Over the course of the simulation, the ball
position moves counter-clockwise, following a three-sided decaying cycle.

� To specify an XY plot

1. Activate the XY Plot parameter.

2. Under the X Axis parameter, choose the input signal to be used for X
coordinate generation: 1 represents the input signal attached to the top input
connector tab on the ��
� block, 2 represents the input signal attached to
the second to the top input connector tab on the ��
� block, and so on.

3. Click on the OK button, or press ENTER.

����
���+����	��	��

	�����	���

+(

� To label the X axis on an XY plot

In an XY plot, VisSim automatically labels the X axis with the label for the
input signal used for X coordinate generation. For example, if you activate XY
Plot and choose 2 under X Axis, VisSim uses the label assigned to input
signal 2.

1. Click on the Labels tab.

2. Enter a label for the input signal you chose to be used for X coordinate
generation. The Trace 1 box corresponds to 1 in the X Axis parameter, the
Trace 2 box corresponds to 2 in the X Axis parameter, and so on.

3. Click on the OK button, or press ENTER.

Multiple XY Traces: Creates two independent XY plots, which allows two signals
to be superimposed. The XY Plot option must be activated in order to use this
option.

Line Type: Click on the DOWN ARROW and choose Point, Line, or Discrete.

• Point displays signal values as individual data points. The primary advantage of
point plots is that you can see the separation of data as time advances.

• Line connects data points with solid line segments. On color displays, line
segments are keyed to the color to their corresponding input connector tab. On
monochrome displays and printers, VisSim automatically uses line patterns
(solid, dot, dash, and dot-dash) to distinguish multiple signals. You may have to
lower the point count in the Plotted Points parameter to allow enough room
between data points for the pattern to be displayed. If this is not satisfactory,
you can overlay signal traces with geometric markers.

• Discrete displays signal values as stepped line segments. In a discrete plot,
VisSim holds the Y value constant from point to point. A discrete plot is helpful
when data points are irregularly spaced and you don’t know where the curve is
accurate.

Plotted Points: Determines the smoothness and accuracy of a plot. The more data
points you plot, the smoother and more accurate the plot. However, increasing the
number of plotted data points also increases the time it takes to print and display the
plot.

The maximum number of data points that can be plotted is 128,000. For Windows
NT and Windows 95, the maximum number is 250 million.

Actual Point Count: Displays the number of data points plotted.

Log X and Log Y: Allow data to be plotted in logarithmic and semi-logarithmic
coordinate systems. When you specify a logarithmic or semi-logarithmic plot, you
cannot plot negative values on the log axis. Any negative value will be clipped to the
low end of the scale. When neither parameter is activated, the plot defaults to linear.

����
���+

�	��	��

	�����	���

+%

To Do this
Create a semi-logarithmic plot where the X
axis is log10 and the Y axis is linear

Activate the Log X parameter.

Create a semi-logarithmic plot where the Y
axis is log10 and the X axis is linear

Activate the Log Y parameter.

Create a plot using log10- log10 scales Activate the Log X and Log Y parameters.

Decibel Y: Rescales the Y axis to display the values in decibels.

Grid Lines: Extends grid lines from the vertical and horizontal axis coordinates.
Grid frequency — that is, the vertical and horizontal spacing of grid lines — is
controlled by the spacing of the axis coordinates. VisSim automatically establishes
reasonable axis coordinate spacing and hence controls the grid frequency.

Read Coordinates: Overlays the plot with a set of crosshairs and displays crosshair
position at the bottom of the plot.

When you click the left or right mouse button, VisSim freezes the crosshairs. Click
the left mouse button again to erase the crosshairs.

Save Data To File: Opens the Select File dialog box to specify a file to which the
plot data is to be saved. Click on the DOWN ARROW in the Files of Type box to
choose a file format.

8�3������	���
������

The Labels property sheet lets you name your plots, label the X and Y axes, and
apply names to signal traces.

����
���+����	��	��

	�����	���

++

Title and Subtitle: The Title and Subtitle parameters let you provide names for
your plots. Titles and subtitles can be up to 80 alphanumeric characters. The title
appears in the plot title bar; the subtitle is displayed in the top area of the plot. By
default, plots are titled Plot and have no subtitles.

X Label and Y Label: The X Label parameter specifies a label for the X axis. To
label the X axis on an XY plot, see the description of the XY Plot parameter on page
63. The Y Label parameter specifies a label for the Y axis.

Axis labels can contain up to 80 alphanumeric characters.

Trace 1, Trace 2, Trace 3, and Trace 4: Let you specify labels for up to four input
signals. The Trace 1 box corresponds to the top input connector tab, the Trace 2 box
corresponds to the next lower tab, and so on.

Signal labels can contain up to 80 alphanumeric characters.

' �����	���
������

The Axis property sheet lets set upper and lower bounds for the X and Y axes,
choose a time scale, specify axis divisions, and more.

Y Upper Bound, Y Lower Bound, X Upper Bound, and X Lower Bound:
Specify the upper and lower bounds for the X and Y axes. These bounds are in effect
when you activate the Fixed Bounds parameter in the Options property sheet.

Time Scaling: Specifies X axis scaling in microseconds, milliseconds, seconds,
minutes, hours, and days. When you select a different time axis scale, VisSim re-
calculates the values in the X Upper Bound and X Lower Bound boxes. When you
close the dialog box, the X axis is scaled to the time you chose.

����
���+

�	��	��

	�����	���

+.

Axis Divisions: You can override the plot’s grid tick division by activating Fixed
Tick Count and entering values into the X Divisions and Y Divisions boxes. The
numbers you enter indicate the number of grid ticks on each axis.

Retrace Options: Allows you to configure a plot as an eye diagram. Activate
Retrace Enabled and specify the desired interval in the Interval box. In the Start
Time and End Time boxes, enter the start and end times for the eye diagram. Eye
diagrams are particularly useful for analyzing digital data waveforms.

'������������	���
������

With the Appearance property sheet, you can add color and background patterns to
your plots.

Color: Click on Foreground to color the axis labels and scaling text; click on
Background to color the plotting area. Activate the Override Default Colors to
override the color specified in the View > Colors command.

Bitmap: You can specify a bitmap image background for the plotting area. Type the
file name directly into the Bitmap box or select one using Image command button.
The specified bitmap image file overrides any background color selection.

�
��������
�
The ���	� *���'block displays up to four signals in a scrolling window. You
define the display width and scrollable width of the window. To scroll back and
forth through the window, use the horizontal scroll bar at the bottom of the
���	� *��� block.

����
���+����	��	��

	�����	���

+1

You can customize the strip chart and control how data is presented in the following
ways:

• Choose frequency domain strip charts.

• Select Y axis scaling, fixed bounds, or a time axis scale.

• Display signal traces as individual data points, line segments, or stepped line
segments.

• Overlay signal traces with geometric markers.

You can also save simulation data to file in .DAT, .M, .MAT, and .WAV formats.

"�����
�����	������
��������

Like the ��
� block, a ���	� *��� block initially displays data in the time domain.
All signals are plotted on the Y axis; X axis represents time. As data points arrive to
be plotted, VisSim dynamically rescales the plot bounds and connects the data points
with line segments.

��5�������
�������
�3�	��
To change the size or shape of the ���	� *��� block for better viewing, drag the
���	� *���+� borders or corners to adjust its size.

)���
�������
�������
�3�	��
To print just a strip chart, click on the control-menu box in the upper left-hand
corner of the ���	� *��� and select the Print command. VisSim prints the strip
chart in horizontal bands, with a maximum of four bands per page. VisSim uses as
many pages as necessary to print all the data. VisSim also honors the margin settings
specified by the File > Page Setup command.

����������
�������
���	���
���
The Strip Chart Properties dialog box controls how simulation data is presented.

� To access the dialog box

1. Choose Edit > Block Properties.

2. Click the mouse over the ���	� *���'block.

3. Select the strip chart parameters. (See the descriptions below for information
about each parameter.)

4. Click on the OK button, or press ENTER.

����
���+

�	��	��

	�����	���

+-

4�
�	�����	���
������

The Option property sheet lets you define the display width and scrollable width of
the window; select fixed axis bounds, logarithmic Y scaling, or decibel Y scaling;
activate frequency domain plotting; enable an external trigger; display signal traces
as individual data points, line segments, or stepped line segments; and more.

Fixed Bounds: Specifies the region of the strip chart you want to view by letting
you select the plotting bounds. When Fixed Bounds is activated, VisSim uses the
values for the X Upper Bound, X Lower Bound, Y Upper Bound, and Y Lower
Bound parameters in the Axis property sheet. Out-of-range signal values are clipped
to the existing strip chart bounds.

Frequency Domain: Obtains the frequency power spectrum through the use of the
Fast Fourier Transform (FFT) algorithm.

Do not obtain frequency power spectrum data until after you have run a simulation.
If you halt the simulation prematurely, the fidelity of the FFT is diminished.

Unexpected peaks
If your frequency domain plot produces unexpected peaks, check the
simulation step size to verify that your sampling rate is adequate for
obtaining accurate results. Then, based on the simulation step size and
range, check the Plotted Points parameter to verify that you are indeed
plotting each time step.

Geometric Markers and Marker Count: The Geometric Markers parameter
overlays signal traces with geometric markers (squares, diamonds, circles, and

����
���+����	��	��

	�����	���

.7

triangles). These markers are particularly useful for monochrome displays and
printers.

By default, VisSim overlays each signal trace with 10 markers; however, if this is
not satisfactory, you can change the number of markers with the Marker Count
parameter.

External Trigger: Determines whether VisSim displays simulation data in the strip
chart based on the value of an external trigger. When activated, External Trigger
causes VisSim to place a round input connector on the ���	� *��� block. When
signal values entering the external trigger are 1, simulation data is displayed in the
strip chart; when signal values entering the external trigger are 0, simulation data is
not displayed.

Line Type: Click on the DOWN ARROW and choose Point, Line, or Discrete.

• Point displays signal values as individual data points. The primary advantage of
point plots is that you can see the separation of data as time advances.

• Line connects data points with solid line segments. On color displays, line
segments are keyed to the color to their corresponding input connector tab. On
monochrome displays and printers, VisSim automatically uses line patterns
(solid, dot, dash, and dot-dash) to distinguish multiple signals. You may have to
lower the point count in the Plotted Points parameter to allow enough room
between data points for the pattern to be displayed. If this is not satisfactory,
you can overlay signal traces with geometric markers.

• Discrete displays signal values as stepped line segments. In a discrete plot,
VisSim holds the Y value constant from point to point. A discrete plot is helpful
when data points are irregularly spaced and you don’t know where the curve is
accurate.

Plotted Points: Determines the smoothness and accuracy of a plot. The more data
points you plot, the smoother and more accurate the plot. However, increasing the
number of plotted data points also increases the time it takes to print and display the
plot.

The maximum number of data points that can be plotted is 128,000. For
Windows NT and Windows 95, the maximum number is 250 million.

Log Y: Enables a logarithmic Y axis. Note that you cannot plot negative values on a
log axis. Any negative value is clipped to the low end of the scale.

Decibel Y: Rescales the Y axis to display the values in decibels.

Grid Lines: Extends grid lines from the vertical and horizontal axis coordinates.
Grid frequency — that is, the vertical and horizontal spacing of grid lines — is
controlled by the spacing of the axis coordinates. VisSim automatically establishes
reasonable axis coordinate spacing and hence controls the grid frequency.

����
���+

�	��	��

	�����	���

.!

Read Coordinates: Overlays the strip chart with a set of crosshairs and displays
crosshair position at the bottom of the chart.

When you click the left or right mouse button, VisSim freezes the crosshairs. Click
the left mouse button again to erase the crosshairs.

Save Data To File: Opens the Select File dialog box to specify a file to which the
strip chart data is to be saved. Click on the DOWN ARROW in the Files of Type box to
choose a file format.

8�3������	���
������

The Labels property sheet lets you name your strip charts, label the X and Y axes,
and apply names to signal traces.

Title and Subtitle: The Title and Subtitle parameters let you provide names for
your strip charts. Titles and subtitles can be up to 80 alphanumeric characters. The
title appears in the plot title bar; the subtitle is displayed in the top area of the plot.
By default, plots are titled Strip Chart and have no subtitles.

X Label and Y Label: The X Label and Y Label parameters specify labels for the
X and Y axes. Axis labels can contain up to 80 alphanumeric characters.

Trace 1, Trace 2, Trace 3, and Trace 4: Let you specify labels for up to four input
signals. The Trace 1 box corresponds to the top input connector tab, the Trace 2 box
corresponds to the next lower tab, and so on. Signal labels can contain up to 80
alphanumeric characters.

����
���+����	��	��

	�����	���

.#

' �����	���
������

The Axis property sheet lets set upper and lower bounds for the Y axis, choose a
time scale, and specify axis divisions.

Y Upper Bound and Y Lower Bound: Specify the upper and lower bounds for the
Y axes. These bounds are in effect when you activate the Fixed Bounds parameter in
the Options property sheet.

Time Scaling: Specifies X axis scaling in microseconds, milliseconds, seconds,
minutes, hours, and days. When you select a different time axis scale, VisSim re-
calculates the values in the X Upper Bound and X Lower Bound boxes. When you
close the dialog box, the X axis is scaled to the time you chose.

Axis Divisions: You can override the strip chart’s grid tick division by activating
Fixed Tick Count and entering values into the X Divisions and Y Divisions boxes.
The numbers you enter indicate the number of grid ticks on each axis.

Displayed Time: Indicates the amount of units to be displayed in the strip chart
window at any given time. The default value is ¼ of the total simulation time.

Scroll Back Interval: Indicates how much data (in X units) is saved for scrolling
through. To conserve memory, keep this value low. To retain more data points, but
use more memory, raise this value. The default value is the total simulation time.

����
���+

�	��	��

	�����	���

.�

'������������	���
������

With the Appearance property sheet, you can add color and background patterns to
your strip charts.

Color: Click on Foreground to color the axis labels and scaling text; click on
Background to color the plotting area. Activate the Override Default Colors to
override the color specified in the View > Colors command.

Bitmap: You can specify a bitmap image background for the plotting area. Type the
file name directly into the Bitmap box or select one using Image command button.
The specified bitmap image file overrides any background color selection.

<��
	�����
The *	��
���� block shows how data are distributed over the course of a
simulation. At each time step, a data point is placed in a bin that corresponds to a
specific range. You can select the number of bins and the maximum and minimum
bin value for the histogram. You can also select the maximum displayed bin height
or have the *	��
���� block dynamically rescale the bins as the data points arrive.
The bins are spaced equally between the minimum and maximum bin values.

����
���+����	��	��

	�����	���

.(

��5���������
	�����3�	��
You might want to change the size or shape of the *	��
���� block for better
viewing. You can expand it to full screen size with the maximize button in the upper
right-hand corner of the histogram or you can drag the histogram’s borders or
corners to adjust its size.

������������
	�������	���
���
The Histogram Properties dialog box controls how simulation data is presented.

� To access the dialog box

1. Choose Edit > Block Properties.

2. Click the mouse over the *	��
���� block.

3. Select the plotting parameters. (See the descriptions below for information about
each parameter.)

4. Click on the OK button, or press ENTER.

Title: Specifies a title for the histogram. The default title is Histogram.

Vertical Label: Specifies a vertical axis label.

Horizontal Label: Specifies a horizontal axis label.

Bin Count: Indicates the number of bins. If you change the bin count, the bin
values are reset. The default is 10.

Max Bin: Indicates the maximum value of the data. The default is 1.

Min Bin: Indicates the minimum value of the data. The default is 0.

Max Bin Height: Indicates the maximum height of the bin. The default is 10.

Autoscale: Rescales plot when the maximum bin height is exceeded.

����
���+

�	��	��

	�����	���

.%

Show Out-Of-Range Data: Displays bins before and beyond the minimum and
maximum bins to hold out-of-range data points.

"��������������������
The ����� block displays signals in either a gauge- or bar-style display. Initially, the
����� block appears as a gauge-style display with one input connector tab.

Gauge display Bar display

You can display up to four signals in a ����� block.

VisSim displays each signal in a separate meter window. The color of the input
connector tab (red, blue, green, or yellow) corresponds to the bar (in a bar display)
or bulb (in a gauge display) of the same color. You have the option of changing
these colors.

The default number of input connector tabs is one. To change the number of input
connector tabs, use the Edit > Add Connector and Edit > Remove Connector
commands.

��5��������
���3�	��
You might want to change the size or shape of the ����� block for better viewing.
You can expand it to full screen size with the Maximize button in the upper right-
hand corner of the ����� or you can drag the �����+� borders or corners to adjust
its size.

����
���+����	��	��

	�����	���

.+

�����������
�����	���
���
The Meter Properties dialog box controls how simulation data is presented.

� To access the dialog box

1. Choose Edit > Block Properties.

2. Click the mouse over the ����� block.

3. Select the plotting parameters. (See the descriptions below for information about
each parameter.)

4. Click on the OK button, or press ENTER.

Style: Switches between a bar and gauge display.

Meter #: 1, 2, 3, and 4 indicate the signal whose settings are to be examined or
changed. The text in the Axis Label, Upper Bound, and Lower Bound boxes
correspond to the selected signal.

Window Title: Indicates a title for the ����� block. The title appears in the title bar
that runs across the top of the ����� block. The default title is Meter.

Axis Label: Indicates a name for the axis on which the signal is displayed. In a
gauge display, the axis label is displayed horizontally across the top of the display;
in a bar display, the axis label is displayed vertically along the left-hand side of the
display.

Upper Bound and Lower Bound: Control the upper and lower bound of the meter
display. The defaults are 1 and 0, respectively.

Fixed Division: Indicates the number of grid ticks.

Appearance: Opens the Appearance dialog box. Click on Foreground to color the
axis label and scale text; click on Background to color the plotting area. The color
you specify overrides the color specified in the View > Colors command.

����
���+

�	��	��

	�����	���

..

You can alternatively specify a bitmap image background for the plotting area. Type
the file name directly into the Bitmap box or select one using the Select Bitmap
command button. The specified bitmap image file overrides any background color
selection.

Signal Color: Opens the Color dialog box in which to specify a color for the input
connector tab, the bulb and needle (in a gauge-style display), and the bar (in a bar-
style display).

����
���������
�	�
Animation is a series of images that, during a simulation, creates the illusion of
movement. VisSim provides two blocks to create animations: the ��	���� block,
for animating an image, and the �	������ block, for animating a line.

'����
�	��3�����
Animation occurs only when you initiate a simulation with display mode active. In
this mode, all wires are hidden, all blocks are frozen in place, and with the exception
of the interactive elements on ����
� and ��	
�� blocks, block parameter values
cannot be changed.

Animation occurs only when display mode is active. You activate display mode with
the View > Display Mode command. A check mark in front of the command
indicates that it is active.

Animation works by feeding signals into an animation block. The signals drive the
coordinates of the animation block, which result in motion. For example, consider
the bouncing ball animation, shown below:

The ball is represented as a single ��	���� block. Movement is introduced by
changing the ball’s x,y screen position coordinates. As the simulation progresses, the
signals entering the ��	���� block continually update its position. The diagram
below drives the simulation of the bouncing ball.

����
���+����	��	��

	�����	���

.1

To create the illusion of depth, you can vary the ball’s w,h size coordinates.

������
��������
��3�	��
The ��	���� block lets you animate an image during simulation. Animation occurs
through movement and changes in the size or appearance of the image.

The Animate Properties dialog box controls how animation data is presented.

� To access the dialog box

1. Choose Edit > Block Properties.

2. Click the mouse over the ��	���� block.

3. Select the animation parameters. (See the descriptions below for information
about each parameter.)

4. Click on the OK button, or press ENTER.

����
���+

�	��	��

	�����	���

.-

'�����������
����
The pictures you apply to an ��	���� block must be in bitmap file format (.BMP).
VisSim supports Windows-formatted bitmaps with up to 256 colors.

� To apply pictures to an animate block

1. In the Number of Images box, enter then number of pictures to be applied to the
block. You can have up to 16 different pictures

2. In the States box, select state 0.

3. Do one of the following:

• Click on the Associate Bitmap command button. VisSim displays the File
Open dialog box in which you can select a .BMP file to be associated with
state 0. The .BMP file name appears in the File Name box.

• In the File Name box, enter the complete pathname of the .BMP file to be
associated with state 0.

4. To apply a second bitmap image to the ��	���� block, select state 1 from the
States box and repeat step 3. Continue to repeat steps 3 and 4, incrementing the
state number, for each bitmap image you want to apply to the ��	���� block.

5. Click on the OK button, or press ENTER.

����
���������
�	�
Signals fed into the ��	���� block drive the animation during simulation. The
��	���� block accepts five input signals.

Signals fed into the top input: The top input connector tab determines which
image is applied to the ��	���� block. An input signal value of 0 causes the bitmap
image file corresponding to state 0 to be displayed; an input signal value of 1 causes
the bitmap image file corresponding to state 1 to be displayed; and so on. Signal
values entering the top input adhere to these rules:

• When a signal value is a non-integer, the ��	���� block truncates it to integer
form.

Determines image

x, y screen coordinates

Width and height
screen coordinates

����
���+����	��	��

	�����	���

17

• When a signal value is greater than the number of set states, the ��	���� block
uses the highest set state.

• When the signal value is negative, the ��	���� block uses state 0.

Signals fed into the x, y, w, and h inputs: The “x” and “y” connectors provide the
x,y screen position coordinates for the image. The input connector tabs labeled “w”
and “h” provide the width and height of the image. By varying these values, you can
create movement and depth.

The values fed into the x, y, w, and h inputs represent display pixels. The x, y
position (0,0) is the upper left corner of the VisSim window. Positive values extend
to the right and down. For your image to appear on most video screens, keep its
position within the bounds of a VGA screen (640x480).

You must perform all coordinate conversion manually. For example, the equations
that determine the position of a bouncing ball are shown below:

However, before the output of the �����I�������
� block can be fed into the
��	���� block, the position of the ball must be mapped to screen coordinates, as
shown below:

The objective is to animate the bouncing of the ball as a function of time. This
means that time is the independent variable, or the x axis. A ���� block is used to
generate time, which ranges between 0 and 1000. A gain of 0.5 is used to scale time

����
���+

�	��	��

	�����	���

1!

so that the amount of space used on the screen in the horizontal direction is limited
in the range 0 to 500 pixels.

The ball position, y, varies from 0.5 to 2 in the simulation. This is scaled 0 to 300
pixels by using the scaling shown. Note that the pixel location (0,0) corresponds to
the top left corner of your screen, and the largest pixel location is the bottom right
corner of your screen.

Creating a trail: To leave a trail of the picture as the simulation progresses,
activate the Leave Trail on Motion parameter.

������
�������*��,�3�	��
The �	������ block lets you animate a line during simulation. You define the line
by specifying two sets of x,y screen coordinate endpoints. You can also set the color,
thickness, and style of the line.

The LineDraw Properties dialog box controls how a line is animated.

� To access the dialog box

1. Choose Edit > Block Properties.

2. Click the mouse over the �	������ block. The lineDraw Properties dialog box
appears.

3. Do the following:

To specify Do this

Color Click on the Color command button and choose a color from
the color palette.

Line style Click on the DOWN ARROW for the Style box and select a style
from the drop down list.

Line thickness In the Thickness box, enter a value. Values are specified in
points.

4. Click on the OK button, or press ENTER.

����
���+����	��	��

	�����	���

1#

����
����������	
�	�
Like the ��	���� block, the �	������ block uses the signal fed into its inputs to
create motion. The top two inputs provide one set of x,y screen coordinate endpoints
for the line; the bottom two inputs provide the other set. By varying these values,
you can create motion.

The signal values fed into the inputs represent display pixels. Position (0,0) is the
upper left corner of the VisSim window. Positive values extend to the right and
down. For your line to appear on most video screens, keep its position within the
bounds of a VGA screen (640x480).

4
����,����
	�����
�������
�	�
Animation can also be applied to a simulation using the �	�*�, ����
�, and ��,��
blocks.

Use this block To For more information
�	�*� Alternate among three images See page 199

����
� Alternate among 16 images See page 168

��,�� Create operator control panels See page 165

1�

����
���.

�	�&����
������
�/0��
�	��

 This chapter covers the following information:

• Setting up an implicit equation with ��)�
�� and �
�����	�� blocks

• Solving an implicit equation

• Using the Implicit Solver property sheet

• Sample implicit equation

��

�����������������
��0��
�	�
When a system contains an implicit equation, that is, an equation defined in terms of
itself, you use ��)�
�� and �
�����	�� blocks to solve it. There may be one or
more or no solutions for the system.

The key steps to setting and solving implicit equations follows:

1. Define the variable that needs to be determined as an unknown using the
��)�
�� block. The order is very important — an unknown must be defined
first and then given a variable name.

2. Isolate zero on the right-hand side of the equation by moving all terms to the
left-hand side.

3. Construct the left-hand side of the equation, and equate the right-hand side by
using the �
�����	�� block to denote zero.

����
���.

���	��
����	�	�
�����	���

1(

Algebraic loops
In the case of connections backward to earlier blocks already evaluated
(often called feedback), VisSim checks to see that such feedback loops
contain at least one 	�������
�, �����!�������	
�, ��	�����", or
�	������" block. If there is no such block in the feedback, the result is
numerically ill-defined and is referred to as an algebraic loop. VisSim
detects such algebraic loops and produces a warning message.

�	�&��������������
��0��
�	�
When solving an implicit equation, you can use the Newton Raphson solver or a
custom solver. You can also set the error tolerance, maximum iteration count,
perturbation, and relaxation parameters.

� To solve an implicit equation

1. Choose Simulate > Simulation Properties.

2. Click on the Implicit Solver tab.

 The Implicit Solver sheet in the Simulation Properties dialog box appears.

3. Choose the options you want, then click the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

4. Start the simulation.

����
���.

���	��
����	�	�
�����	���

1%

������
���
������
��	�&�����	���
������

The Implicit Solver property sheet provides options for selecting the solver,
suppressing convergence warnings, specifying the maximum iteration count, and
more. The property sheet options are:

None: When you’re not solving an implicit equation, activate None.

Newton-Raphson: Newton-Raphson is a singular value decomposition (SVD) based
solver that performs static optimization at each time step. VisSim derives an n-
dimensional slope by numerically perturbing the ��)�
�� outputs and observing the
effects on the �
�����	���. VisSim uses the slope matrix to compute values for
the ��)�
�� blocks that drive the �
�����	��� to a minimum. Newton-Raphson is
particularly useful for solving static equations in the presence of concurrent
dynamics.

User Defined: When User Defined is activated, VisSim uses the DLL file named
VSOLVER.DLL in your current directory to solve the equation. For information on
creating a custom solver, see page 267.

Suppress Convergence Warnings: If you’re solving for a set of roots that are
equidistant from zero, you must initialize the ��)�
�� block to a value other than
zero to force the equations to converge. To suppress the convergence warnings when
solving an implicit system with nonlinear dynamics, activate Suppress Convergence
Warnings.

Max Iteration Count: This option lets you specify the number of iterations the
solver performs while attempting to meet the error tolerance criterion. The default
value is 10.

Error Tolerance: This option lets you specify the maximum allowable difference
in total error between two successive iterations. A total error is computed as the sum
of individual errors squared, where the error signal is the input signal to a
�
�����	�� block. Newton-Raphson ceases iterating when the difference in total
error between two successive iterations becomes less than the tolerance.

Use Error Tolerance in conjunction with Max Iteration Count to control the time
spent converging. The larger the tolerance, the quicker and less accurate the solution.
The default value is 0.0001.

Relaxation: This option attenuates the iteration update value to attain convergence
for equations that prove difficult to converge. As a side effect, it slows the
convergence process because it forces the iteration to take smaller steps. The typical
range is from slightly greater than 0 to 2. Select values less than 1 for systems that
appear to be unstable. The default value is 1.

Perturbation: This option indicates the value by which the ��)�
�� blocks are
numerically perturbed to evaluate the Jacobian (matrix of first partials). Each
element of the Jacobian is a ratio of constraint change with respect to block

����
���.

���	��
����	�	�
�����	���

1+

perturbation value applied to the ��)�
�� blocks. The perturbation value should be
at least one order of magnitude less than the ��)�
�� initial value, but greater than
1e-12 of the initial value for the ��)�
���. The default value is 1e-007.

������
��0��
�	��� ������

��������	���������������
��0��
�	�
Consider the equation:

y y+ =cos() 0

This equation can be realized as:

In this configuration, the output of the ����	�������	
�, namely y + cos(y) must
equal zero. Further, from left to right, the entire diagram reads

Starting with an initial guess of 2, find a value for the ��)�
�� ���	����
called y such that y + cos(y) = 0.

The result indicates that y = -0.739085 is one possible solution. Other solutions may
exist and can be identified by using different initial guess values for the ��)�
��
block.

'�&�������	���������������
��0��
�	�
Consider the equation:

x x2 3 2 0+ + =

The roots of this equation can be obtained analytically as x = -2 and x = -1 for
comparison. This equation can be solved implicitly in VisSim as shown on then next
page.

����
���.

���	��
����	�	�
�����	���

1.

In this configuration, the output of the ����	�������	
�, namely x2 + 3x + 2, must
equal zero. The simulation yields one of the roots to be x = -1, as shown, starting
from a guess of +10. When a guess value of -10 is used, the diagram becomes:

In this case, the second root, x = -2 is obtained.

This model shows that the solution obtained depends on the initial guess supplied to
the ��)�
�� block. When the initial guess value is larger than -1, the solution
converges to -1. When the initial guess value is smaller than -2, the solution
converges to -2.

1-

����
���1

)��2	��������	3���4�
���5�
�	�

 This chapter covers the following information:

• Setting up global optimization with �
�� and ���������-�)�
�� blocks

• Performing global optimization

• Using the Global Optimization dialog box

• Sample global optimization problem

��	3���	�
���5�
�	��3�����
Global optimization involves the automatic adjustment of system parameters to
maximize or minimize a specified quantity, while satisfying one or more global
constraints.

During global optimization, VisSim iteratively updates the parameter vector such
that the cost function generally decreases until it finds a minimum. The resulting
parameter values become the optimum values because they minimize the cost
function.

�	�
�2���
�	���,�
��������	������������&�����
Most cost functions will have many local minimum values and although VisSim tries
to avoid local minima, the one VisSim finds may not be the overall minimum. To be
sure that it is the global minimum, you may want to perform several runs of the
optimizer, using different initial ���������-�)�
�� values.

����
���1������ ���	��
!��"��
#��	�	$��	��

-7

�	�
�2���
�	���,�
���	���������&�����
It is possible that a cost function has no minimum, or has a flat surface away from
the minima. In this case, the global optimizer will get confused and wander aimlessly
(how can you run downhill when there is no hill?). If the optimizer appears to run
for a long time with little convergence, you should suspect flat spots in your cost
function. In such cases, you may have to reformulate the cost function such that it
has at least one minimum. A common mistake is to put a �	�	� block just before the
cost input. In this case the optimizer will experiment with larger and larger unknown
values to no avail. If a �	�	� block is used in the cost function, it must be placed
before an integration of total error.

)��2	��������	3���	�
���5�
�	�
Global optimization is almost always a nonlinear problem and rarely is there a single
best method for minimizing the cost function. VisSim provides the three
optimization methods: Powell, Polak-Ribiere, and Fletcher Reeves. You can
alternatively write a custom optimizer, as described on page 270.

Regardless of the method you select, VisSim produces a sequence of parameter
updates on a per-run basis that decreases the value of the cost function. The basic
parameter update equation is:

P P Pk k k+ = + ≡1 ∆ iteration indexor VisSimrun number

The difference between each method is the way ∆Pk is generated. For more
information on these methods, see Numerical Recipes, The Art of Scientific
Computing (Cambridge University Press).

� To perform global optimization

1. Choose Simulate > Optimization Properties.

 The Optimization Properties dialog box appears.

2. Activate the Perform Optimization option.

����
���1������ ���	��
!��"��
#��	�	$��	��

-!

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

4. Click on the OK button, or press ENTER.

5. Start the simulation.

������
���4�
���5�
�	��)�	���
��������	��3	
The Optimization Properties dialog box provides the following options:

Method: You can choice between three supplied optimizers or use a custom
optimizer.

• Powell: A direction-set algorithm that typically runs faster because it does not
explicitly calculate the gradient.

• Polak Ribiere: A conjugate gradient algorithm that is a bit more sophisticated
than Fletcher Reeves for arriving at the supposed minimum of the quadratic
form.

• Fletcher Reeves: Requires fewer iterations to convergence. This conjugant
gradient algorithm is slower than Powell’s method.

• User Method: When User Method is activated, VisSim uses the DLL file
named VOPT.DLL in your current directory to solve the equation. For
information on creating a custom global optimizer, see page 270.

Perform Optimization: This option must be activated to perform global
optimization.

Max Iteration Count: Indicates the maximum number of iterations.

Error Tolerance: Indicates the maximum error between the results of two
successive iterations. The default value is 10.

��	3���	�
���5�
�	��� ������

4�
���5���������3�����	3���
Suppose you want to manufacture paper grocery bags at the lowest possible cost,
where each bag has a volume of at least one cubic foot (1728 cubic inches). To
minimize the cost of material, you must determine the optimal bag dimensions that
minimize the amount of paper used for each bag, while ensuring that the volume of
the bag (v = whd) is greater than or equal to 1728 cubic inches. To simplify the
problem, additional material for folding and gluing the bag is ignored.

����
���1������ ���	��
!��"��
#��	�	$��	��

-#

The cost function can be expressed as:

s = 2(wh + dh) + dw

where s is the surface area of the bag, w is its width, h is its height, and d is its depth.

The cost function is also subject to a given volume constraint:

Volume v = whd ≥ 1728 cubic inches

Though not explicitly specified, it is clear that each of the physical dimensions w, h,
and d must be greater than zero.

To solve this problem in VisSim, construct the following block diagram:

Three �
��� blocks, all set to 10, are used to produce the initial guess values. Their
outputs are connected to three ���������-�)�
�� blocks. To enforce the
requirement that the physical dimensions of the bag are positive, the outputs of the
���������-�)�
�� blocks are connected to three ��� blocks, and the outputs of
the ��� blocks are connected to three ���	���� blocks named d, w, and h. The
outputs of the three ���	����� are connected to
	����" blocks to monitor the
changes and the final values of the bag dimensions.

The outputs of w, h, and d are connected to a three-input � block, and the output of
the � block is connected to a ����	�������	
� and to a
	����" block. A �
���
block set to 1728 is connected to the other negated input of the ����	�������	
�.
A �
�� block, connected to the output of the ����	�������	
� block, enforces

����
���1������ ���	��
!��"��
#��	�	$��	��

-�

the minimization of the difference v - 1728. This is equivalent to forcing the volume
v to be very close to the desired value of 1728 cubic inches.

In order to minimize the surface area, the equation s = 2(wh + dh) + dw is coded
using ���	����, �, ����	�������	
�, and �
��� blocks. The output of the final
����	�������	
� block is connected to a ���	���� s, which is connected to
another �
�� block and to a
	����" block.

Optimization is performed using the Powell method. The number of iterations is set
to 50 and the error tolerance is 0.001. The optimization results indicate that a volume
of 1728 cubic inches can be attained by using an ideal surface area of 717.7 square
inches, with the final bag dimensions of w = 10.05, h = 10.00, and d = 17.20 inches.
In comparison, the intuitive solution of w = h = d = 12 inches has a surface area of
720 square inches.

�,	�������
�����	 ���
�	��	2����?π�@
Consider the problem of approximating a sinusoid sin(πt) in the range (0,1) by two
straight line segments. In the range (0,0.5), the line segment has a positive slope, and
in the range (0.5, 1.0), the second line segment has a negative slope. The
approximation can be written as:

sin() () (.)π t a r t br t≅ − −2 05

where a and b are unknown weight factors, r(t) is a unit ramp that starts at t = 0, with
a slope of +1, and -2r(t - 0.5) is a ramp that starts at t = 0.5 with a slope of -2.

The optimization problem in this case involves the determination of optimal values
for the unknown weight factors a and b. This equation can be realized as:

����
���1������ ���	��
!��"��
#��	�	$��	��

-(

In this configuration, two �
��� blocks, both set to 1, provide the initial guess
values to two ���������-�)�
�� blocks. The outputs of the ���������-�)�
��
blocks are connected to ���	���� blocks a and b, thereby defining a and b to be
unknown parameters. The output of a is connected to a � block. A ���� block, with
an slope of 1 and no delay, is connected to the other input of the � block.

To generate a ramp of slope -2 that is delayed by 0.5 sec, a �
��� block set to 0.5 is
wired to the time delay input of a �	������" block and a ���� block with an slope
of -2 is wired to the main signal input of the �	������". The output of the
�	������" block is connected to one input of a � block and the other input is
connected to the output of b.

The outputs of the two � blocks are connected to a ����	�������	
�, and the
output of the ����	�������	
� is connected to a ���	���� Approx. The output
of a �	� block set to an amplitude of 1 and a frequency of π radians/sec, is
connected to a ���	���� named Sin(pi*t). The output of Sin(pi*t) and Approx are
connected to a ��
� block to observe the results.

The �
�� function is constructed using a ����	�������	
� to calculate the
difference Sin(pi*t) - Approx. The output of the ����	�������	
� is connected to
both inputs of a � block to compute the squared error value. The output of the �
block is connected to an 	�������
� block to compute the integrated squared error,
and the output of the 	�������
� block is connected to a �
�� block, thereby
defining the integrated squared error to be the cost or objective function that needs to
be minimized by the optimization process. Two
	����" blocks are connected to
the outputs of a and b to observe the final values computed by the optimizer for the
two weight factors.

Using the Fletcher-Reeves optimization method, with maximum iterations set to 300
and error tolerance of 0.0001, the values of a and b are obtained as 2.39 and 2.28,
respectively.

6�&��������
�����	 ���
�	��	2����?π
@
By modifying the above problem, consider the usage of five line segments instead of
two. The approximation can be written as:

sin() () (.) (.) (.) (.)π t a r t br t cr t d r t er t≅ + − − − + − − −0 3 2 05 3 0 6 4 0 7

����
���1������ ���	��
!��"��
#��	�	$��	��

-%

This can be realized as:

The delayed versions of ramp signals are constructed using a ���� block with the
correct slope connected to the main signal input of a �	������" block, and a �
���
block with the correct delay value connected to the time delayed input of the
�	������" block.

Five ���������-�)�
�� blocks, with initial guesses set to 1, define the ���	����
blocks a, b, c, d, and e to be unknown parameters. The outputs of the five � blocks
are connected to a five-input ����	�������	
� block. The output of the
����	�������	
� is connected to a ���	���� named Approx. The output of a
�	� block with an amplitude of 1, and frequency of π radians/sec is connected to a
���	���� named Sin(pi*t). The outputs of Approx and Sin(pi*t) are connected to a
��
� block.

The cost function is evaluated by computing the integral squared error. In this case,
the optimization process yields the parameter values to be a = 2.85488,
b = -2.00003, c = 0.766694, d = -0.125587, and e = 0.405633. From the ��
� block,
it is also clear that the five-segment approximation is quite close to the original
sinusoid.

����
���1������ ���	��
!��"��
#��	�	$��	��

-+

��	�3����		
���

<	,��	�
��&	������
������
�3���
�=
You should limit the cost calculation because, during optimization, some parameters
may be supplied with values that drive the system into instability. The resulting large
cost value can cause the optimization method to fail to converge due to the limited
range of floating point numbers.

When limits are used, they must occur before the integration of the square of the
error so that onset of saturation is numerically reflected in the cost function. In this
way, onset of saturation is reflected in the cost value and gives the optimizer a slope
to follow down.

$��
��	�
���
�
������
����
	��������
	�,����
���	,���

����3	�
�	�
�����������
��
&�����=
Use an initial tolerance value of 10 in the Optimization Properties dialog box when
you know very little about the optimal parameter values; otherwise, the algorithm
will take a very long time to search a short distance in parameter space.

Once optimal values are found, the ���������-�)�
��� can be reinitialized with
the new optimal values and the optimization can be rerun with a lower tolerance.

Though the algorithm tries to avoid local minima, to verify that the values found are
optimal, run the optimizer with different initial values supplied to the
���������-�)�
���.

-.

����
���-

������������
���6��
���

This chapter covers the implementation of:

• Time domain filters with tapped delay

• Time domain filters with transfer functions

• Frequency domain filters

• Interactive IIR and FIR filter design with the �����!�������	
� block

*���
���2��
���3�����
A digital filter is a discrete time system that delivers an output, which is a modified
version of its input.

Filters are the basic building blocks for most signal processing applications. They
are typically used to extract or eliminate one or more constituent frequencies of an
incoming signal.

Filters used for signal conditioning are usually designed from frequency response
specifications, and are called frequency-selective filters. Frequency-selective filters
operate by attenuating some frequency components of the input signal while
allowing other components to pass through unchanged. For example, a low-pass
filter attenuates all frequencies in the input signal that are above a specified
frequency.

����
���-

���	��	��
�	�	���
%	�����

-1

6��
���	����
�	��
Filter operations can be represented mathematically by one or more difference
equations. A general difference equation can be written as:

y k a x k i b y k ji j

j

N

i

M

() () ()= − − −
==

∑∑
10

This equation represents the relationship between the kth sample of the output to the
N previous values of the output, the M previous values of the input, and the current
value of the input. If all the coefficients bj are zero, the resulting filter is called a
non-recursive or Finite Impulse Response (FIR) filter. Recursive filters are also
known as Infinite Impulse Response (IIR) filters.

In FIR filters, the output is simply the weighted sum of the current and previous
inputs. In contrast, in IIR filters, the output is the weighted sum of the current and
previous inputs, and the previous outputs.

������	�����2��
����,�
��
�����������
Consider a filter described by the following recursive difference equation:

y(k) = x(k) - 0.2y(k-1) - 0.8y(k-2)

You can easily specify and implement this filter in time domain using ��	�����"
blocks. The filter input is x(k) and the filter output is y(k). The intermediate states are
y(k-1) and y(k-2). The filter can be implemented as:

The Time Between Pulses parameter for the ��������	� block must be greater than
or equal to the simulation time step. An arbitrary value of 1 is assigned to input x.

����
���-

���	��	��
�	�	���
%	�����

--

������	�����2��
����,�
��
����2���2���
�	��
Filters can also be implemented in the time domain using the �����!�������	
�
block. For example, consider again the difference equation:

y(k) = x(k) - 0.2y(k-1) - 0.8y(k-2)

You can represent it in the form of a transfer function as:

Y z

R z

z

z z

()

() . .
=

+ +

2

2 0 2 0 8

You can then implement the transfer function in block diagram form using the
�����!�������	
� block:

In the Transfer Function Properties dialog box, activate Discrete and set the value of
dT to be greater than or equal to the simulation time step.

6��0�������	�����2��
�����������
�
�	�
The dual nature of time and frequency domains means a filter in the time domain can
be equivalently implemented in the frequency domain. Depending on the
application, however, one domain is usually more convenient to work in than the
other.

A recursive IIR filter can be implemented in the frequency domain by taking the
product of the frequency domain equivalents of the input sequence and the filter.

y k IDFT Y IDFT x
H

H
a

b

() (()) ()
()

()
= = ⋅







ω ω ω

ω

����
���-

���	��	��
�	�	���
%	�����

!77

Here, X(ω) and Y(ω) are the Discrete Fourier Transforms (DFT) of the input and the
output sequences respectively, and IDFT represents the Inverse Discrete Fourier
Transform operation. Ha(ω) and Hb(ω) are the DFTs of the filter coefficients ai and
bj, respectively, as given by the following difference equation:

y k a x k i b y k ji j

j

N

i

M

() () ()= − − −
==

∑∑
10

The DFT’s Ha(ω) and Hb(ω) must be of the same length as X(ω) and Y(ω). To
accomplish this, the filter coefficients must be zero-padded appropriately.
Consequently, the frequency domain implementation is computationally inefficient
and will not be discussed further.

�	������	��	2�6
9�����

9�2��
���
The non-recursive FIR filter has a finite memory due to the finite number of delays
that can be realized in a practical implementation. FIR filters usually have superior
phase characteristics. To obtain sharp cut-off characteristics, FIR filters need to be of
high order.

On the other hand, a recursive IIR filter has infinite memory due to its dependence
on all prior outputs. Moreover, it generally requires a significantly lower number of
elements to obtain a specific cut-off characteristic. The phase characteristics of IIR
filter, however, are inferior to those of FIR filters.

�
����
�&��2��
����������,�
��
���
����2��6���
�	��3�	��
The first step in the digital filter design process is to specify the characteristics that
you desire. The more fundamental specification would be the difference equation
that is to be satisfied. Such specifications may arise directly from requirements in a
signal processing problem.

However, much more common are the specifications that arise when you want to
process a continuous time signal digitally, and you expect the digital filter to
approximate the performance of an analog filter.

Using the �����!�������	
� block you can design either IIR filters using analog
prototypes or FIR filters.

9�2��
���������
IIR filter design is the design of digital filters using Bessel, Chebyshev, Butterworth,
or Inverse Chebyshev analog prototypes. To set up an IIR filter, click on the IIR
Filter command button in the Transfer Function Properties dialog box.

����
���-

���	��	��
�	�	���
%	�����

!7!

������
���

9�6��
���)�	���
��������	��3	
The IIR Filter Properties dialog box lets you constrain the design through either filter
order or goodness-of-fit. The analog prototypes can be subsequently converted into a
digital filter using bilinear transformation.

Method: You can choose from four analog filter methods, as described below.

• Bessel: Bessel filters are designed using Bessel polynomials. The Bessel filters
are characterized by the property that the group delay is maximally flat at the
origin of the s-plane. The step response of the Bessel filters exhibits very low
overshoot and both the magnitude and impulse response exhibit gaussian decay
as the filter order is increased.

• Butterworth: Butterworth filters are characterized by the property that the
magnitude characteristic is maximally flat at the origin of the s-plane. This
means that all the existing derivatives of the magnitude response are zero at the
origin. Butterworth Low Pass filters are all-pole designs and have an attenuation
of 3 dB at the critical frequency. The filter order completely specifies the filter
and can either be explicitly provided or determined from the attenuation
frequency and the attenuation level desired.

• Chebyshev and Inverse Chebyshev: Chebyshev filters are characterized by
the property that the peak magnitude of the approximation error is minimized
over a prescribed band of frequencies. The magnitude is equi-ripple over the
band of frequencies. For example, the magnitude oscillates between the maxima
and minima of equal amplitude.

For the Chebyshev filters, the band of the frequencies over which the error is
minimized is the Pass Band. For Inverse Chebyshev filters, the error is

����
���-

���	��	��
�	�	���
%	�����

!7#

minimized over the Stop Band. The optimality property of the Chebyshev filters
guarantees that no other all-pole filter offers equal or better performance in both
the Pass and Stop bands. Inverse Chebyshev filters exhibit monotonic behavior
in the Pass Band (maximally flat around the zero frequency) and equi-ripple
behavior in the Stop Band. The Low Pass filter has poles in the left half of the s-
plane and zeros on the imaginary axis.

Type: Indicates the band pass filter type.

Specification method: The following table describes how the specification method
relates to the analog filter prototypes.

Filter Notes
Bessel You only need to specify the order.

Butterworth If you specify the order, VisSim determines the attenuation. If you
specify the attenuation, VisSim determines the order.

Chebyshev If you specify the order, then the order and epsilon define the filter.
The attenuation is fixed once a particular order and epsilon are
chosen. If you specify attenuation, VisSim determines the order
based on the attenuation and epsilon. VisSim determines the order
such that the attenuation and epsilon specifications are met.

Inverse Chebyshev Whether you specify the order or epsilon, the attenuation needs to be
specified. If you specify the order, VisSim computes the epsilon
based upon the attenuation and the attenuation level desired. In
general, as the attenuation desired for a fixed-order filter increases,
the corresponding epsilon also increases. This property could be
exploited to yield very narrow band filters by specifying an
extremely high attenuation, along with a narrow band. If you specify
epsilon, VisSim determines the order based upon the attenuation
desired. VisSim determines the order such that the attenuation and
epsilon specifications are met.

The order of the filter that is generated is twice the order of the filter specified. For
example, if you enter 2 in the Order box for a Band Pass filter, the filter generated
will have an order of 4.

Cut-off Frequency: The low and high cut-off frequencies in the Frequency
Specification box define the band edges. For Low Pass and High Pass filter types,
there is only one cut-off frequency. For Band Pass and Band Stop filters, the low and
high frequencies are both cut-off frequencies.

Attenuation and Attenuation Frequency: The attenuation characteristics of the
filter are defined by:

• Low and high attenuation frequencies: The attenuation frequencies are set by
the Attenuation Frequency (Low) and Attenuation Frequency (High)
parameters. The values you enter indicate the frequency at which the specified

����
���-

���	��	��
�	�	���
%	�����

!7�

attenuation level is reached.

• Low and high attenuation levels: The attenuation levels are set by the
Attenuation (Low) and Attenuation (High) parameters. The values you enter
indicate the amount by which you desire to suppress the level. An attenuation
level of 100 equals a magnitude of 1/100.

For example, a Band Pass filter with band edges specified at 100 and 1000, an
attenuation level of 10, and attenuation frequencies of 20 (low) and 100 (high)
means that the filter gain is 0.1 at 80 and 0.05 at 1100. The epsilon (ε) is a measure
of the attenuation level reached by the filter’s magnitude characteristics at the critical
frequency. Attenuation level at the critical frequency is given by:

Advanced Settings: The Epsilon and Ripple parameters provide two alternate ways
of specifying the behavior of a Chebyshev filter.

There is a fluctuation (or ripple) in the amount (or attenuation gain) of the Band Pass
and Band Stop. The filter order affects the size of the ripple, and the filter can be
tuned to minimize that ripple.

Epsilon refers to the error between the ideal filter and the actual filter, regardless of
the ripple. Minimizing the epsilon provides a best fit filter.

1

1 2+ ε

The ripple is the attenuation level at the critical frequency. Defining the epsilon
completely defines the ripple.

��

����
���2��0���������
�
Frequency units can be specified in either radians per second or hertz. You set the
frequency unit in the dialog box for the Simulate > Simulation Properties command.

������
�������

9�2��
��
When you generate an IIR filter, VisSim calculates the polynomial coefficients for
the transfer function with the desired frequency characteristics.

� To generate an IIR filter

1. Click on the Calc Filter command button to calculate the filter coefficients. The
coefficients will be displayed in the Num (numerator) and Den (denominator)
boxes.

2. Click on the Done button to close the IIR Filter Setup dialog box and transfer
the filter numerator and denominator coefficients to the Transfer Function Setup
dialog box.

����
���-

���	��	��
�	�	���
%	�����

!7(

6
9�2��
���������
VisSim uses the Remez Multiple Exchange algorithm to design FIR filters. FIR
filters in discrete time are realized as all-zero filters and are characterized by a finite
impulse response in the time domain. Because they are all-zero filters, they are
particularly well-suited to efficient computation by tapped delay.

FIR filter design is typically executed in the frequency domain for convenience. The
filter has the desired magnitude specifications and a linear phase characteristic.

Differentiators and Hilbert transformers
You can also design differentiators and Hilbert transformers using the
Remez Multiple Exchange algorithm.

Differentiators are characterized by an approximate linear magnitude
response over the desired frequency range.

Hilbert transformers are characterized by a flat magnitude response and a
phase of 90o over the specified frequency range. Frequency characteristics
of an ideal Hilbert transformer are:

H e jj()ω = − 0 ≤ ≤ω
π
T

= + j
π ω π
T T

≤ ≤ 2

where ω is the angular frequency and T is the sampling time period.

*�����
�������	�
���	���6
9�2��
���������
The discrete time filter design problem is treated as a weighted Chebyshev
approximation problem and is solved using the Remez Multiple Exchange algorithm
to compute the filter coefficients. The algorithm builds a discrete time representation
of the filter.

In VisSim, the Discrete parameter in the Transfer Function Setup dialog box controls
whether the generated FIR filters are discrete or continuous. When you design a
discrete FIR filter, you must also specify a time step in the dT box.

To implement a continuous FIR filter, de-activate the Discrete parameter. In this
case, the filter is initially designed as a discrete time filter. Bilinear transformation is
subsequently used to produce a continuous time equivalent. For more information on
the Remez algorithm, see Theory and Application of Digital Signal Processing
(Prentice Hall).

����
���-

���	��	��
�	�	���
%	�����

!7%

Tapped delay implementation
Tapped delay is a method of transfer function implementation that has linear
computational and storage requirements with respect to model order.
Because most FIR filters have a tendency to be high order, it makes sense to
design FIR filters with tapped delay implementation. To do so, activate
Tapped Delay in the Transfer Function Properties dialog box.

������
���6
9�6��
���)�	���
��������	��3	
When you click on the FIR Filter command button in the Transfer Function Setup
dialog box, the FIR Filter Setup dialog box is opened.

Order: The value specified in the Order box defines the filter order. Typically,
higher orders yield better approximations.

Filter Kind: Indicates the type of filter to be generated. Your choices are FIR,
differentiator, and Hilbert transformation. Descriptions of these filters are on page
104.

Band specification: Band specifications describe the frequency bands magnitude
response characteristics of the filter. The following rules must be observed when
entering band specifications:

• Frequencies are specified in hertz for discrete and continuous filters.

• For discrete filters, the frequency specified must be lower than the Nyquist
frequency.

• For continuous filters, infinite frequency is indicated using the reserve word
“inf.”

����
���-

���	��	��
�	�	���
%	�����

!7+

Start Freq and End Freq: Defines the lower and upper cut-off frequencies for
each band.

Band Weight: Dictates the relative amounts of error allowed for each band. Higher
weight values of a particular frequency band reflect higher sensitivity to error, where
error is perceived as the difference between the actual and desired filter response. At
least one band must have a weight of 1. For each of the other bands, you can use a
higher or lower weight depending on the relative error that can be tolerated.

An equal weight of 1 on all bands indicates that the maximum absolute error on all
bands is the same. A weight of 10 on one band and a weight of 1 on other bands
implies that the former band has a maximum approximation error that is ten times
less than that of the other bands.

Band Gain: Defines the desired frequency response magnitude for each band.

� To add a band

• Enter the band specification and click on the Add button.

The band information is added to the list box. Each row in the list box corresponds
to a single band. For FIR filters, if the number of bands increases, the filter order
must be increased correspondingly, to maintain the same approximation error. For
differentiator and Hilbert transformers, the number of bands is limited to one. The
gain on the differentiator implies the gain achieved at the end frequency. The weight
in either case is optimally adjusted to give the best error characteristics.

� To delete a band

• Select the band to be deleted from the list box and click on the Delete button.

� To change a band’s specifications

1. Select the band to be changed from the list box.

The band’s data appears in the edit boxes.

2. Make the desired changes.

3. Click on the Change button. The band data is modified in the list box to reflect
the changes.

������
�������6
9�2��
��
Calc Filter command button. This generates the appropriate filter coefficients.
Before computing the filter coefficients, the algorithm computes the maximum
approximation error. This error is usually referred to as delta (δ) and is defined as
the weighted difference between the actual and the desired magnitude response. A
band with a weight of one will have delta as its absolute approximation error, while

����
���-

���	��	��
�	�	���
%	�����

!7.

a band with a weight of 10 will have its absolute error 0.1 times δ. The value of δ is
displayed in the message box.

� To generate an FIR filter

1. Click on the Calc Filter button. The coefficients are displayed in the Num
(numerator) and Den (denominator) boxes. If the delta displayed is too large,
increase the order of the filter and re-calculate the filter.

2. Click on the Done button to close the FIR Filter Properties dialog box and
transfer the filter numerator and denominator coefficients to the Transfer
Function Properties dialog box.

!7-

����
���!7

$	������,�
��4
����'������
�	��

This chapter covers the following information:

• Using the 	��
�� block to import data from other applications into VisSim

• Using the ���
�� block to export data out of VisSim

• Using the ��#, ��#����	��, and ��#���
 blocks to create links to other
applications

��	�
����3�����
VisSim uses the 	��
�� block to import information from many different file types
generated by other applications. These include data files (.DAT), MatLab and
MatLab-like files (.MAT and .M), and 8-bit or 16-bit sound files (.WAV).

The 	��
�� block reads data points from the specified input file into the system
model and translates them into scalar, vector, or matrix output signals. The 	��
��
block can receive up to 50 scalar inputs and an unlimited number of vector or matrix
input. The data can be either fixed interval or asynchronous.

The 	��
�� block is particularly useful for comparing experimental data with
simulated results and for inserting trial control data from an external source.

��

�������
�������
�2���
The input file can contain a header line to describe the separation of data points. The
following table describes the header line format:

For this type of interval Use this format

Fixed interval #I=start-time, end-time, increment

Asynchronous interval #T=number (time-column)

����
���!7

����	��
�	�&
#�&��
����	���	���

!!7

��	�
������
�
Importing data involves dragging an 	��
�� block into the work area and setting up
the block to reference the input file.

� To import data

1. From the Signal Producer category in the Blocks menu, drag an 	��
�� block
into the work area.

2. Choose Edit > Block Properties.

3. Click the mouse over the 	��
�� block.

 The Import Properties dialog box appears.

4. Select the import parameters. (See the descriptions below for more information
about each parameter.)

5. Click on the OK button, or press ENTER.

������
���
��	�
�)�	���
��������	��3	
The Import Properties dialog box provides the following options:

File Name: Indicates the file to be used as input to VisSim. You can specify .DAT,
.M, .MAT, or .WAV files. When you specify a .WAV file, you can play the sounds
you imported by clicking on the Play Sound button.

If you do not know the name or location of the input file, click on the Select File
button to locate and choose a file.

To browse or edit the input file, click on the Browse Data button after you select a
file.

Start Column: In a multi-column file, you can choose the column that corresponds
to the top-most connector tab. The default value 1 corresponds to the first column.

����
���!7

����	��
�	�&
#�&��
����	���	���

!!!

Type: Indicates the type of data to be imported.

Dimension: Controls the dimensionality of the output signals. The choices are
scalar, vector, and matrix.

Interpolate: Interpolates between two data points, instead of using the last known
data value. Thus, if the data point is 5 at t1, and 15 at t2, then at t1.5, the data point is
10 with interpolation, and 5 with no interpolation.

Extrapolate: Infers the next unknown data point based on the difference between
the last two known data points.

Data Point Time Delta: Indicates the time interval between data points in the input
file. If the input file was generated by VisSim using the ���
�� block, VisSim
automatically reads the time interval information from the file header and sets the
parameter accordingly. You have the following choices:

• Fixed Interval: Indicates that data points occur in fixed intervals. Enter the
interval in the corresponding box. This is the default setting.

• Time Data Column: Indicates that data points occur in irregular time intervals.
Enter the column containing the time data points in the corresponding box.
Valid column numbers are 1 through 16.

Data File Info: Provides read-only information about the imported data. The Start
Time and End Time fields indicate when VisSim starts and stops recording data. The
Data Point Count field indicates the maximum number of data points to be read into
VisSim. If the input file was generated in VisSim using the ���
�� block, VisSim
automatically reads the data point count from the file header and sets the field
accordingly. The maximum number of data points that can be read into VisSim is
128,000 (Windows 3.1) or 250 million (Windows 95 and Windows NT).

/ �	�
����3�����
The ���
�� block writes signals to an output file in .DAT, .M, .MAT, or .WAV file
format. The ���
�� block can send up to 50 scalar outputs and an unlimited number
of vector or matrix output. The output file can subsequently be used as input to
VisSim or to a variety of other programs, such as MatLab and Microsoft Excel. The
following information is written to the file:

• Data points that represent signal values. Data points are stored as ASCII text.

• Time interval information that applies to the data points.

/ �	�
������
�
Exporting data involves dragging an ���
�� block into the work area and setting up
the block to reference the output file.

����
���!7

����	��
�	�&
#�&��
����	���	���

!!#

� To export data

1. From the Signal Consumers category in the Blocks menu, drag an ���
�� block
into the work area.

2. Choose Edit > Block Properties.

3. Click the mouse over the ���
�� block.

 The Export Properties dialog box appears.

4. Select the export parameters. (See the descriptions below for more information
about each parameter.)

5. Click on the OK button, or press ENTER.

������
���/ �	�
�)�	���
��������	��3	
The Export Properties dialog box provides the following options:

Data File Name: Indicates the name of the export file into which data points are to
be written. You can type the file name directly into this box or select one using the
Select File button. If you do not specify a data file, VisSim writes the data points to a
file using the same name as your current block diagram. VisSim applies the .DAT
extension to the file and stores it in your current directory.

You can export data in .DAT, .M, .MAP, .MAT, and .WAV file formats. The
following special considerations apply to map files and wave files:

• If you want to create an output file to be used as input to the ��� block, you
must specify the .MAP extension.

• You can create 8-bit and 16-bit sound files. You specify the bit count in the
Digits of Precision box. Provided you have the appropriate hardware

����
���!7

����	��
�	�&
#�&��
����	���	���

!!�

configuration and software drivers installed, you can preview the sound by
clicking on the Play Sound button.

If you click on the Browse Data button, the file specified in the Data File Name box
is opened for you to examine or edit.

Data Point Time Delta: Controls how VisSim writes the time interval information
to the data file. You have the following choices:

• Fixed Interval: Indicates that data points occur in fixed intervals. The default
interval used will be taken from the simulation step size. You can specify a
different interval, however, it should be a multiple of the simulation step size,
because the ���
�� block does not interpolate. Data is only exported at integral
multiples of the simulation step size. This automatic adjustment is invisible
when it occurs, which means it is not reflected in either the ���
�� block’s
dialog box or the data file header. You can see the adjustment only when you
open the data file.

 If you import the output file into a simulation, you should edit the file header to
reflect the interval at which the data was actually exported. The 	��
�� block
will interpolate as needed, retaining the timing of the original simulation run.
Use the Browse Data button to open the data file for editing. The format of the
data header file should be as follows:

 #I = start-time, end-time, increment

 The default is Fixed Interval.

• External Trigger: Indicates that data will be recorded based on the state of the
external trigger input. When External Trigger is activated, VisSim adds a round
input connector tab to the ���
�� block. A zero value on the trigger inhibits
data recording. A value of 1 causes a data point to be recorded.

Valid column numbers are 1 through 16, inclusive.

Periodic Data Flush and Flush Interval: When activated, Periodic Data Flush
writes the data in the export buffers to the specified data file at intervals established
with Flush Interval.

Suppress VisSim Header: Suppresses writing the data header to the export file.
Suppressing the data header may be necessary if the export file is to be imported into
a software product other than VisSim.

The header information indicates whether the data is fixed or variable interval; the
valid time range over which the data is collected; the actual fixed interval; and the
time column for variable interval data. The following formats are used:

Fixed Interval #I = start-time, end-time, increment
Variable Interval #T= number (time-column)

����
���!7

����	��
�	�&
#�&��
����	���	���

!!(

Field Separator: Specifies the column separation character in the export file, which
allows for compatibility with other applications. Recognized column separators are
tabs, new lines, spaces, commas, semi-colons, and colons.

Digits of Precision: Specifies (for .DAT, .M, .MAT files) the maximum number of
significant digits printed regardless of the decimal point. The default is 15.

For .WAV files, use Digits Of Precision to indicate whether the sound file is 8-bit or
16-bit. Enter 8 for 8-bit sound files or 16 for 16-bit sound files.

Append to File: Appends the exported data to the end of a specified file, instead of
re-writing the file at the start of each new simulation run. This parameter is useful
for multi-run applications, such as data acquisition, Monte Carlo simulations, and
neural network training

Comment: Specifies a comment that is placed at the beginning of the exported data
file. A comment is limited to 180 characters.

Data File Info: Provides read-only information about the export file. The Start
Time and End Time fields indicate when VisSim starts and stops writing data points
to the export file. These settings are obtained from the current settings of Range Start
and Range End in the Simulation Properties dialog box.

The Max Data Points field indicates the maximum number of data points to be
written to the export file. The default is 512 data points. The maximum number of
data points that can be written to file is 128,000 (Windows 3.1) or 250 million
(Windows 95 and Windows NT).

**/�3�����
By creating dynamic data exchange (DDE) links, you can share information in one
file with several other files, and you need only maintain the original file; the other
files are updated automatically. For example, if you store data in a Microsoft Excel
spreadsheet, you can use that data in a VisSim block diagram. When you update the
spreadsheet, VisSim automatically updates the data in the block diagram when you
run a simulation.

You create DDE links by copying a selection from one application (referred to as the
source or server) and pasting it into another one (referred to as the destination or
client) using the Paste Link or Paste Special command. Before you can create a link,
the source file must be saved to disk.

VisSim offers three blocks for creating DDE links:

• The ������� block, which links source information in a VisSim block diagram
to another application, such as a Microsoft Excel or Visual Basic file.

• The �������	
� block, which links source information in an application file
to a VisSim block diagram.

����
���!7

����	��
�	�&
#�&��
����	���	���

!!%

• The ��� block, which establishes a two-way link: it acts as both the source
(sender) and destination (receiver). For example, a ��# block can send data to a
Visual Basic program to work on, and then receive the updated data back from
Visual Basic.

You can create DDE links only between VisSim and other Windows applications
that support DDE linking. Some applications do support DDE links, but do not
support creating the links by copying and pasting selections. When this is the case,
you can still create a link by entering the link address directly to both the source and
destination files.

����
�����������
	�������������,�
��**/�����&�
Follow this procedure when the source information for the link is contained in an
application other than VisSim.

� To create a DDE link from an application into VisSim

1. In the application, select the information you want linked to your block diagram,
and from the Edit menu, choose the Copy command.

The selected information is copied to the Clipboard.

2. Switch to VisSim and open the block diagram in which you want to create a
DDE link.

3. Do one of the following:

a) Choose Edit > Paste Link.

b) Position the pointer where you want the ��#����	�� block to appear and
click the mouse.

-Or-

a) From the Blocks menu under DDE, drag a ��#����	�� block into the
work area.

b) Choose Edit > Block Properties and click the mouse over the ��#����	��
block.

����
���!7

����	��
�	�&
#�&��
����	���	���

!!+

4. The DDE Receive Link Configure dialog box appears.

5. Click on the Paste Link button and choose the options you want. (For
information on the options, see the descriptions below.)

6. Click on the OK button, or press ENTER.

7. Choose Simulate > Go to update the link.

������
���**/�9����&��8�����	�2����������	��3	
The DDE Receive Link Configure dialog box provides the following options:

Server|Topic: Indicates the name of the source application (server) and the type of
information (topic). For example, Excel|FOO.XLS indicates an Excel spreadsheet
named FOO.

If the source application supports Copy Link, VisSim automatically fills in this
parameter when you click on the Paste Link button.

If the source application does not support Copy Link, you must enter the source
application name and topic name directly to this box. Use the same names that the
source file uses as its server and topic names. Separate the names with a pipe (|)
character.

Send Item: This option does not apply to the ��#����	�� block.

Receive Item: Indicates a name that references cells, cell ranges, values, or a field
of data in the source file. For example, R1C1 references the information in the cell
occupying row 1, column 1 of an Excel spreadsheet.

If the source application supports Copy Link, VisSim automatically fills in this
parameter when you click on the Paste Link button.

����
���!7

����	��
�	�&
#�&��
����	���	���

!!.

If the source application does not support Copy Link, you must enter the same name
that the source file uses as its item name.

Data Timeout: This option does not apply to the ��#����	�� block.

Custom Update Interval: Indicates how often the ��#����	�� block requests
information from the linked application. If you enter the value 1, ��#����	��
requests information once per sec; if you enter 10, ��#����	�� requests
information once every 10 sec; and so on. If you do not enter a value, ��#����	��
updates at each time step of the simulation by default.

Poke Data: This option does not apply to the ��#����	�� block.

Synchronous Operation: Suspends the simulation until the ��#����	�� block
receives a message with updated data.

The ��#����	�� block has a buffer that contains the current value of the block. If
the block is not synchronous, at every time step, ��#����	�� supplies whatever
value is in its buffer. When Synchronous Operation is turned on and the
��#����	�� block has not received updated data since the last time step,
��#����	�� waits until it receives a new message with updated data.

Output Dimension: Controls the dimensionality of the data exiting the
��#����	�� block. The choices are scalar, vector (n x m), or matrix (m x n).

Bitmap: Applies a bitmap image to the ��#����	�� block. You can type the file
name directly into the Name box or select one by pressing on the Select Bitmap
button.

����
�������������
	����������,�
��**/����
Follow this procedure when the source information for the link is contained in a
block diagram.

� To create a DDE link from a VisSim block to another application

1. In VisSim, wire a ��#���
 block to the output of the block that contains the
information you want linked to another application.

2. Choose Edit > Block Properties and click the mouse over the ��#���
 block.

 The DDE Send Link Configure dialog box appears.

����
���!7

����	��
�	�&
#�&��
����	���	���

!!1

3. In the Send Item box, enter a name. The default name is simDataIn.

 Note: When the block diagram contains multiple links to other applications
(that is, the diagram contains more than one ��#���
 block), the name you
enter in the Send Item box must be unique to that block diagram. If it’s not
unique, VisSim will not pass the correct information to the application.

4. Choose the options you want. (For information on the options, see the
descriptions below.)

5. Click on the Copy Link button.

6. Click on the OK button, or press ENTER.

7. Switch to the destination application and open the file in which you want to
create a link.

8. Position the insertion point where you want to insert the information.

9. Choose Edit > Paste Link.

 Note: Some applications have a Paste Special command instead of a Paste Link
command. Refer to the application's documentation for information on linking.

10. Switch back to the block diagram, and choose Simulate > Go to update the link.

������
���**/������8�����	�2����������	��3	
The DDE Send Link Configure dialog box provides the following options:

Server|Topic: Indicates the name of the source application (server) and the type of
source information (topic). This parameter defaults to VisSim|name-of-block-
diagram. The server name must always be VisSim.

����
���!7

����	��
�	�&
#�&��
����	���	���

!!-

Send Item: Indicates a name for the source information. The destination file uses
this name in its item field. To maintain multiple DDE links from a single block
diagram, the name you enter must be unique.

The information in this box defaults to simDataIn.

Receive Item: This option does not apply to the ��#���
 block.

Data Timeout: This option does not apply to the ��#���
 block.

Custom Update Interval: Overrides the time step interval for sending data to the
destination application. If you enter the value 1, ��#���
 sends data once per sec; if
you enter 10, ��#���
 sends data once every 10 sec; and so on. If you do not enter a
value, ��#���
 sends data at each time step of the simulation. You can use Custom
Update Interval only when Poke Data is activated.

Poke Data: Sends data to the destination application at every time step, regardless
of whether it is ready to receive the data. When Poke Data is not activated, data is
sent only when the destination application requests it.

You can override the time step interval for sending data with the Custom Update
Interval.

Output Dimensions: Controls the dimensionality of the data entering the ��#���

block. The choices are scalar, vector (n x m), or matrix (m x n).

Bitmap: Applies a bitmap image to the ��#���
 block. You can type the file name
directly into the Name box or select one by pressing on the Select Bitmap button.

����
������
,	�,��������,�
��**/
The ��# block is a combination of the ��#����	�� block and ��#���
 block: the
��# block can both send and receive information. As a server, the ��# block passes
source information to another application to work on. As a client, the ��# block
receives updated information back from the application.

� To create a two-way DDE link

Use this procedure when you want VisSim to fill in the name of the server and topic
pair of the destination application.

1. Create the link to pass information from the application to VisSim:

a) In the application, select the information you want linked to your VisSim
block diagram, and choose Edit > Copy.

 The information is copied to the Clipboard.

b) Switch to VisSim and open the block diagram in which you want to link the
copied information.

c) From the Blocks menu under DDE, drag a ��# block into the work area.

����
���!7

����	��
�	�&
#�&��
����	���	���

!#7

d) Choose Edit > Block Properties and click the mouse over the ��# block.

 The DDE Link Configure dialog box appears.

e) Choose the Paste Link button and the additional options you want. (For
information on the options, see the descriptions below.)

f) Click on the OK button, or press ENTER.

2. Create the link to pass information from VisSim back to the application:

a) In VisSim, wire the block (containing the information you want linked to
the other application) to the ��# block.

b) Choose Edit > Block Properties and click the mouse over the ��# block.

 The DDE Link Configure dialog box appears.

c) In the Send Item box, enter a unique name.

d) Choose the Copy Link button and the additional options you want. (For
information on the options, see the descriptions below.)

e) Click on the OK button, or press ENTER.

f) Switch back to the application file.

g) Move the insertion point to where you want to insert the information.

h) Choose Edit > Paste Link.

Note: Some applications have a Paste Special command instead of a Paste
Link command. Refer to the application’s documentation for information on
linking.

����
���!7

����	��
�	�&
#�&��
����	���	���

!#!

������
���**/�8�����	�2����������	��3	
The DDE Link Configure dialog box provides options for establishing a DDE link,
specifying the source information, indicating the time-out interval, and more. These
options are described below.

Server|Topic: Indicates the name of the application (server) and the type of
information (topic) to which you’re establishing a link. For example, VBDDE|NNET
sends data to and receives data from the application called VBDDE on the NNET
topic. Use the pipe (|) character to separate the server from the topic.

Send Item: Indicates a name for the source information. The destination file uses
this name for its item field. To maintain multiple DDE links from a single block
diagram, the name you enter must be unique.

The information in this box defaults to simDataIn.

Receive Item: Indicates a name that references cells, cell ranges, values, or a field
of data in the source file. For example, R1C1 references the information in the cell
occupying row 1, column 1 of an Excel spreadsheet.

If the source application supports Copy Link, VisSim automatically fills in this
parameter when you click on the Paste Link button.

If the source application does not support Copy Link, you must enter the same name
that the source file uses as its item name.

Custom Update Interval: Overrides the time step interval for sending and
receiving information. If you enter 1, ��# requests and sends information once per
sec; if you enter 10, ��# requests and sends information once every 10 sec; and so
on. If you do not enter a value, ��# updates at each time step of the simulation.

Data Timeout: Indicates the time, in sec, that VisSim will wait to receive
simulation time step data from the client. The default is two sec.

Poke Data: This option does not apply to the ��# block.

����
���!7

����	��
�	�&
#�&��
����	���	���

!##

Synchronous Operation: This option does not apply to the ��# block.

Output Dimension: Controls the dimensionality of the data entering and exiting the
block. The choices are scalar, vector (n x m), or matrix (m x n).

Bitmap: Applies a bitmap image to the ��# block. You can type the file name
directly into the Name box or select one by pressing on the Select Bitmap button.

����
����**/�������,�
���������
�	���
��
��	��	
�����	�

�	���8��������)��
��8���
A DDE link consists of a three-part link address contained in both the source
(server) and destination (client) files. An example of such an address is shown
below:

Most applications, including VisSim, automatically create the link address using the
Copy Link and Paste Link commands. If, however, the application with which you’re
linking supports DDE but not the Copy Link and Paste Link commands, you can still
create a DDE link by typing the link address directly into the source and destination
files. Just make sure that the server, topic, and item names are the same in source and
destination files.

Refer to the descriptions of the ��#, ��#����	��, and ��#���
 blocks earlier in
this chapter for information on how to enter these fields directly into the blocks.
Refer to the documentation for the other application for entering link addresses.

!#�

����
���!!

$	������,�
��8�����*�������

This chapter covers the following information:

• Creating model hierarchy

• Embedding blocks

• Adding block diagrams

• Using variables to pass signals

• Using path aliases to reference files

• Tracking diagram progress

• Protecting your work

����
�����	�������������
Compound blocks allow you to encapsulate one or more blocks in a single block.
This gives you more flexibility in constructing and editing your block diagram
models, especially if they are complex. The top level blocks display major
component connectivity, leaving the underlying levels to describe the logic of each
component.

Compound blocks also encourage a modular approach to large model construction
by allowing you to design and test functionally independent subcomponents
concurrently. Then using the ����
 block or the File > Add command (as described
on pages 127 and 128), you can incorporate each subcomponent back into the large
system diagram.

You can have as many levels as you want in a compound block. (The number is
limited only by your system resources.) If your compound block contains sensitive
information, you can prevent other users from viewing the compound block by

����
���!!

����	��
�	�&
'����
�	������

!#(

locking it closed. You can alternatively apply read-only attributes to the compound
block. This lets other users view the contents of the compound block but denies them
the ability to edit it. Applying protection to compound blocks is described on page
136.

You can also make compound blocks disappear from view in display mode.

To make compound blocks easier to distinguish, you can color them blue, or for
more visual power, attach bitmap images to them. If you choose to identify a
compound block by name, you can change the name with the Edit > Block
Properties command, as described on page 17.

����
�������	��	����3�	��
When you create a compound block, VisSim attaches connector tabs to the
compound block for each of the following situations:

• All unsatisfied connector tabs on the internal blocks (except global variables)

• All satisfied connector tabs to external blocks

� To create a compound block

1. Select the blocks to be encapsulated.

2. Choose Edit > Create Compound Block.

3. Under compound name, enter a name. Avoid using the dot (.) character in the
name; VisSim uses it to separate compound block names in the title bar. The
default name is Compound.

4. Click on the OK button, or press ENTER.

*����������
	����	��	����3�	��
The process of moving through and displaying the levels of a compound block is
referred to as drilling. As you drill into a compound block, VisSim adds the name of
the compound block to the title bar to help you keep track of where you are.

� To drill down

1. Point to a compound block.

2. Click the right mouse button.

����
���!!

����	��
�	�&
'����
�	������

!#%

3. If the compound block is password-protected, enter the password in the
Password dialog box, then click on the OK button or press ENTER.

The compound block remains unlocked until you close the diagram.

� To pop up

1. Point to empty screen space.

2. Click the right mouse button.

<�������	��	����3�	���
You can selectively hide compound blocks while working in display mode.

� To hide compound blocks

1. Choose Edit > Block Properties.

2. Point to the compound block you want hidden in display mode and click the
mouse.

3. Activate the Hide In Display Mode parameter.

4. Click on the OK button, or press ENTER.

5. Activate View > Display Mode.

�	�2�����������
�����	���	��	����3�	���
The pictures that can be configured on compound blocks are graphical images in
.BMP file format. You can create them yourself or choose from the VisSim bitmap
library, which resides in VISSIM\BITMAP\DIAGRAM. See Appendix E, “Working
with Bitmaps,” for pictures of these bitmaps.

� To configure a picture on a compound block

1. Choose Edit > Block Properties.

2. Point to the compound block on which the picture is to be configured and click
the mouse.

3. Click on the Select Image button and choose the bitmap image to be configured
on the block.

4. Click on the OK button, or press ENTER.

����
���!!

����	��
�	�&
'����
�	������

!#+

5. Click on the OK button, or press ENTER when the Compound Properties dialog
box appears.

8�3�������	����
	��
�3��	���	��	����3�	���
When you want to distinguish between the inputs and outputs on compound blocks,
you can assign labels to their connector tabs. When the View > Connector Labels
command is activated, connector labels are displayed on the block. In addition, when
you drill into it, those labels appear next to the input and output connectors on the
left and right side of the screen.

If you do not specify a connector label, the label defaults to the class name specified
in the Connector Properties dialog box, if one is specified.

� To assign connector labels

1. Point to the connector tab on the compound block you want to label. The pointer
turns into an upward pointing arrow.

2. Double-click the mouse.

 The Connector Properties dialog box appears.

3. In the Connector box, enter a name.

4. Click on the OK button, or press ENTER.

5. If you want the label to appear on the block, activate the Connector Labels
command in the View menu.

*���	�&�������	��	����3�	��
Use the Edit > Dissolve Compound Block command to de-encapsulate the blocks
one level below the current level. When you execute Dissolve Compound Block, the
blocks immediately below the current level move up to the current level. The blocks
remain highlighted until the next command is executed to make it easier to recreate
the compound block, in case you change your mind.

When you dissolve a compound block, VisSim maintains all internal wiring
connections.

����
���!!

����	��
�	�&
'����
�	������

!#.

� To dissolve a compound block

1. Choose Edit > Dissolve Compound Block.

2. Point to the compound block and click the right mouse button.

3. Click the mouse on empty screen space to exit this command.

4
����
�������	�������	�,�
���	��	����3�	���
VisSim lets you do other things with compound blocks.

For information about See

Coloring compound blocks Page 267

Protect compound blocks Page 136

/�3�������3�	���
With embedding, you can include information created in one VisSim block diagram,
referred to as the source diagram, in one or more other block diagrams, referred to
as the destination diagrams. Each time the source diagram changes, the changes are
propagated in the destination diagrams.

When you embed a block diagram, a read-only version of the diagram is inserted
into the destination diagram along with a link to the source diagram. You can drill
into the embedded diagram just as you would a compound block; however, you
cannot edit it. Edits can only be made to the source diagram.

��

�����������������
	�3����3�����
Before you can embed a diagram, check that its top level is a single compound
block. If it’s not, use the Edit > Create Compound Block compound to create one, as
described on page 124.

If you want to restrict access to the ����
 block, apply the protection to the
compound block, as described on page 138.

/�3���������3�	����������
Embedding a block diagram involves dragging an ����
 block into the work area
and setting up the link to the source file.

� To embed a block diagram

1. Open the destination diagram and move to the block diagram level where you
want to insert an embedded block diagram.

2. Drag an ����
 block into the work area.

����
���!!

����	��
�	�&
'����
�	������

!#1

3. Choose Edit > Block Properties.

4. Click the mouse over the ����
 block.

5. In the File Name box, enter the name of the block diagram file to be embedded.
If you do not see the file you want, click on the Select File button to search for
it.

6. Click on the OK button, or press ENTER.

/��
���������3������3�	����������
You cannot edit an embedded block diagram itself. Instead, you open and edit the
source file to which the embedded diagram is linked. When you edit a source file, all
embedded diagrams linked to that source file are immediately updated to reflect the
changes.

9��	����
���������3������3�	����������
You may lose a link if you move or rename the source file. If this occurs, you must
redirect the link to the appropriate location or file name.

� To reconnect a link

1. Choose Edit > Block Properties.

2. Point to the ����
 block and click the mouse.

3. In the File Name box, enter the correct path or new file name. If you are unsure
of the path or file name, click on the Select File button to search for the file you
want.

4. Click on the OK button, or press ENTER.

'������3�	�����������
You can add another block diagram to the currently opened diagram using the
File > Add command. After you’ve added the block diagram, some blocks and wires
may overlap as a result of this operation; use the mouse and Edit menu commands to
reposition them appropriately.

� To add a block diagram to the current diagram

1. Open the block diagram into which you want to add another block diagram.

2. Choose File > Add.

3. In the File Name box, type or select the name of the block diagram you want to
add. If you do not see the block diagram you want to add, select a new drive or
directory.

����
���!!

����	��
�	�&
'����
�	������

!#-

4. Click on the OK button, or press ENTER.

An empty rectangular box appears that represents the block diagram. The
pointer is anchored to the box.

5. Move the box to where you want the block diagram added.

6. Click the mouse.

������&����3����
	�������������
The ���	���� block lets you name a signal and transmit it throughout your diagram
without the use of wires.

Variables of the same name share signals. For example, in the diagram below, the
variable j is used in three different locations:

The variable j in the upper part of the diagram is the declared variable. Only
declared variables are allowed input signals. In addition, there can be only one
declared variable of a given name. The other two j variables are referenced variables.
Wires cannot be fed directly into referenced variables; they receive their input from
the declared variable.

All variables can have any number of output signals.

����
����&����3���
The ���	���� block is located under the Blocks menu in the Annotation category.

� To create a variable block

1. Choose Edit > Block Properties.

2. Click the mouse over the ���	���� block.

����
���!!

����	��
�	�&
'����
�	������

!�7

 The Set Variable Name dialog box appears.

3. Do one of the following:

To Do this

Create a new variable Enter a new name. To limit the scope of the
variable, preface the name with a colon (:)
character to make it local; two colon (::) characters
to make it definition-scoped, or no colons to make
it global. (For information on scoping variables,
see the descriptions below.)

Reference an existing variable Click on the DOWN ARROW and choose a name from
the list. (For information on the scope of the
variables, see the descriptions below.)

4. Click on the OK button, or press ENTER.

Naming a variable
It is never a good idea to name a ���	���� block -X, or a number, like 1 or
2 or 3. Naming a variable -X leads to confusion with the �� block. Naming a
variable a number leads to confusion with the �
��� block.

��	�����&����3���
In VisSim, you can define which portions of the diagram can reference a variable by
designating its scope. There are three types of scope: diagram scope, definition and
below scope, and level scope.

• Diagram scope indicates that the variable can be referenced at any hierarchical
level of the block diagram. Variables with diagram scope are referred to as
global variables.

• Definition and below scope indicates that the variable can be referenced at the
current hierarchical level, as well as all levels beneath it. To identify definition-
scope variables, preface their names with two colon (::) characters.

• Level scope indicates that the variable can be referenced only at the current
level of the block diagram. Variables with hierarchical level scope are referred
to as local variables.

����
���!!

����	��
�	�&
'����
�	������

!�!

8�&�����	��
A variable with level scope cannot be referenced outside of its current hierarchical
level. Although level scoping is the most restrictive type of scope, it actually has
several key advantages. By limiting the region over which variables can be
referenced, you can construct sections of a diagram without worrying about whether
your variable names conflict with other names used in other parts of the diagram. In
addition, users reading your diagram will know immediately that the variables’ use
is limited to a small region.

Variables with level scoping are prefaced with the colon (:) character.

*�2���
�	������3��	,���	��
Giving a variable definition and below scope allows the variable to be referenced not
only at the hierarchical level of the diagram at which it was defined, but also at all
the levels beneath it. For example, if compound block A contains a definition scope
variable, all the sublevels in compound block A are able to use the variable.

By using definition-scoped ���	�����, you can copy or add subsystems to an
existing diagram without breaking or misdirecting references.

To give a variable definition and below scope, preface its name with two colon (::)
characters.

*���������	��
Variables with diagram scope are called global variables. Because global variables
reference any part of a block diagram, you should exercise caution in your use of
them. Global variables can make a block diagram hard to maintain because they
increase the diagram’s complexity.

In addition, global variables increase the chances of a conflict in names between
modules. For example, engineers working on different parts of a large project may
choose the same name for different global variables. The problem won’t surface
until each module is added to the master diagram.

As a rule of thumb, global variables should be used only when transmitting system-
wide constants or signals that would be laborious or visually messy to represent as
wires.

Making copies of global variables: When you make a copy of a compound block
containing a global variable with wired input, VisSim renames the copied occurrence
of the global variable in the following manner:

original-variable-block-name@unique-number

����
���!!

����	��
�	�&
'����
�	������

!�#

6�������&����3�����2���
�	��
To find where a variable is defined, use the Edit > Find command and activate the
Match Variable Definitions Only option.

"���
����&����3���
The following variable block names are built into VisSim:

Block name Description

$firstPass Generates an initial unit pulse on the first step of a simulation.

$lastPass Generates a final pulse on the last step of a simulation.

$runCount Holds the simulation iteration count for multiple simulation runs,
such as Monte Carlo simulations and parameter sweeps.

$timeStart Returns the start time of the simulation.

$timeStep Returns the step size of the simulation.

$timeStop Returns the stop time of the simulation.

��������
����������
	���2�������2����
As it name implies, a path alias is another name for all or part of the full
specification of a file. You use path aliases to quickly insert frequently referenced
files — for example, map files, import files, and bitmap image files. Rather than
entering the complete file specification for each file, you can use path aliases to
reference any part of the specification.

You can also use path aliases whenever automatically updating information would
make maintaining your diagrams easier. For example, suppose an ��	���� block
referenced numerous bitmap images in C:\MYTEST\BMPS. If you moved the
location of the bitmap images to C:\DIAGRAMS\BITMAPS, changing each file
specification of each referenced bitmap would be a frustratingly long exercise. With
path aliasing, you’d only have to update the path alias once for VisSim to correctly
locate each bitmap image.

����
������
���������
You create path aliases using the Preferences command in the Edit menu and
clicking on the Path Aliases tab. The Alias=Path window lists all existing path
aliases. New path aliases are entered in this window.

� To create a path alias

1. Choose Edit > Preferences.

2. Click on the Path Aliases tab.

����
���!!

����	��
�	�&
'����
�	������

!��

3. In the Alias=Path window, double-click the mouse over the ellipsis. The cursor
becomes an I beam.

4. Enter the path alias in the following format:

 path-alias=path

 When entering path aliases, follow the MS/DOS rules for drive and directory
specifications. For example, to create an alias BmpDir that references the
\BMPS directory on your C: drive, enter:

 BmpDir=C:\BMPS\PUMPS.BMP

5. Click on the OK button, or press ENTER.

����
������
�������������3�	���
You can use path aliases in any block that references a file. When you specify a path
alias, prefix it with a dollar ($) sign. For example, to use the path alias BmpDir, enter
$BmpDir in the file specification box.

� To insert a path alias

1. In the Properties dialog box for the block, position the insertion point where you
want to insert the path alias. (Typically, this is the File Name, Name, Bitmap
Image, or Image box.)

2. Enter the path alias, prefaced with a $ and followed by a backslash; then the file
name.

3. Close the dialog box.

����
���!!

����	��
�	�&
'����
�	������

!�(

:���
�������������
����
	��
The Diagram Information command in the File menu helps you keep track of
important information about a block diagram as it is being developed. You can list
the author’s name and attach comments or an edit history to the block diagram. You
can also identify the block diagram by a longer, more descriptive name. The name
appears in File Open and File Add dialog boxes when you select its DOS file name.

The Diagram Information command also maintains statistics about the block
diagram, including its DOS file name, its byte and block size, its last modification
date, and the version of VisSim used to create it. Note that the Byte Size and Last
Modified fields are not updated until you save the block diagram.

� To add or view diagram information

1. Open the block diagram whose information is to be added to or viewed.

2. Choose File > Diagram Information.

3. You can add or change information in the Title, Author, and Comment boxes.
The statistical information can be viewed, but not edited.

4. When you finish adding or viewing diagram information, click on the OK
button, or press ENTER.

You can add or revise diagram information for the current block diagram at any
time.

)�	
��
�����	���,	��
VisSim offers several levels of protection for your work:

• You can assign your block diagram a password to keep other users from
opening the diagram. You can also request or require that they open the diagram
in read-only mode.

• In large project development, where multiple users are working on the same
diagram, you can assign password protection to particular parts of the diagram
to prevent other users from viewing the information. You can also request or
require that they view the information in read-only mode.

If you decide to use a password to restrict access, make sure to write it down exactly
as you entered it — passwords are case sensitive — and store it in a safe place.
Without the password, even you can’t access the information.

����
���!!

����	��
�	�&
'����
�	������

!�%

)�	
��
����3�	�����������
To assign a password to a block diagram and set options that control how much
access other users have to the diagram, choose the Diagram Information command in
the File menu.

Password Protected: To prevent other users from opening the block diagram, type
a password in the Password box and activate the Locked option. Only users who
know the password can open the diagram and make changes to it.

Read-Only Password Protection: To allow other users to open the diagram, but
prohibit them from making changes, type a password in the Password box and
activate the Read Only option. Only users who know the password can open the
diagram. Once opened, the diagram can only be viewed, however, it cannot be
changed.

Read-Only Requested Protection: To recommend, but not require, that other users
only view a diagram without making changes to it, activate the Read Only check
box. Although the diagram is opened in read-only mode, any user can de-activate the
read-only protection and edit the diagram.

� To restrict access to a block diagram

1. Open the block diagram to which restricted access is to be applied.

2. Choose File > Diagram Information.

3. Do one of the following:

• To lock the diagram closed, enter a password in the Password box and
activate the Locked parameter.

����
���!!

����	��
�	�&
'����
�	������

!�+

• To make the block diagram read-only, enter a password in the Password
box and activate the Read Only parameter.

A password can contain up to 10 characters and can include any combination of
letters and numbers. VisSim echoes an asterisk (*) for each character you type.
Passwords are case sensitive.

4. Click on the OK button, or press ENTER.

5. VisSim asks you to re-enter the password for verification.

� To change or delete a password

1. Choose File > Diagram Information command.

2.. In the Password box, select the row of asterisks that represent the existing
password and do one of the following:

• To change the password, type in a new password.

• To delete the password, press the DEL key.

3. Click on the OK button, or press ENTER.

If you entered a new password, VisSim asks you to re-enter the new password
for verification.

)�	
��
�����	��	����3�	���
Restricting access to a compound block is similar to restricting access to a block
diagram. You have the choice of password protection, read-only password
protection, and read-only requested protection. You enter the level of protection in
the Compound Properties dialog box.

����
���!!

����	��
�	�&
'����
�	������

!�.

� To restrict access to a compound block

1. Choose Edit > Block Properties.

2. Point to the compound block you want protected and click the mouse.

3. Do one of the following:

• To lock the compound block, activate the Locked parameter and enter a
password in the Password box.

• To make the compound block read-only, activate the Read Only parameter
and enter a password in the Password box.

A password can contain up to 10 characters and can include any combination of
letters and numbers. VisSim echoes an asterisk (*) for each character you type.
Passwords are case sensitive.

4. Click on the OK button, or press ENTER.

5. VisSim asks you to re-enter the password for verification.

� To change or delete a password

1. Choose Edit > Block Properties.

2. Point to the compound block whose password you want to change and click the
mouse.

3. In the Password box, select the row of asterisks that represent the existing
password and do one of the following:

• To change the password, type in a new password.

• To delete the password, press the DEL key.

4. Click on the OK button, or press ENTER.

If you entered a new password, VisSim asks you to re-enter the new password
for verification.

� To edit a read-only compound block with password protection

1. Choose Edit > Block Properties.

2. Point to the compound block that is read-only with password protection and
click the mouse.

3. In the Password box, select the row of asterisks that represent the existing
password and type in the correct password.

4. Click on the Read Only attribute to de-select it.

5. Click on the OK button, or press ENTER.

����
���!!

����	��
�	�&
'����
�	������

!�1

)�	
��
������3���3�	���
Password locking is a mechanism that prevents other users from drilling into and
viewing the contents of an embedded diagram. Only users who know the password
can unlock the ����
 block and view its contents.

Password locking is inherited the compound block in the source file. In other words,
you do not apply protection to the ����
 block itself, but rather to the compound
block in the source file.

� To drill into a protected embed block

1. Choose Edit > Block Properties.

2. Click the mouse over the ����
 block.

3. Enter the password.

4. Click on the OK button, or press ENTER.

� To protect an embedded block diagram

1. Open the source file that contains the compound block to be protected.

2. Choose Edit > Block Properties.

3. Click the mouse over the compound block.

4. Activate the Locked parameter and enter a password in the Password box.

A password can contain up to 10 characters and can include any combination of
letters and numbers. VisSim echoes an asterisk (*) for each character you type.
Passwords are case sensitive.

If you do not enter a password, a user can subsequently unlock the ����
 block.

5. Click on the OK button, or press ENTER.

6. VisSim asks you to re-enter the password for verification.

��To change or delete a password

1. Open the source file that contains the compound block to whose password is be
changed or deleted.

2. Choose Edit > Block Properties.

3. Point to the compound block and click the mouse.

4. In the Password box, select the row of asterisks that represent the existing
password and do one of the following:

• To change the password, type in a new password.

• To delete the password, press the DEL key.

����
���!!

����	��
�	�&
'����
�	������

!�-

5. Click on the OK button, or press ENTER.

If you entered a new password, VisSim asks you to re-enter the new password
for verification.

!(!

����
���!#

"�	���9�2������

The Blocks menu lists the standard blocks provided with VisSim. When you click on
the Blocks menu, most of the items that appear have a filled triangle (�) next to
them. These items are block categories. Click on a block category and a cascading
menu appears listing the additional blocks.

To make it easier to find blocks in this chapter, they are presented in alphabetical
order, regardless of their block category. For most blocks, a mathematical function is
included. The following table translates the symbols that may appear in the function:

Symbol What it represents

A Amplitude

e Naperian constant

dt Derivative with respect to time

lb Lower bound

mod Modulus

s Laplacian operator

t Time

ub Upper bound

ω Frequency

x Input signal

y Output signal

Input signals are represented as x x xn1 2, ,... , where x1 represents the topmost signal
entering the block. When n is omitted, x1 is assumed. Output signals are represented

as y y yn1 2, ,... , where y1 represents the topmost signal exiting the block. When n is

omitted, y1 is assumed.

����
���!#

�����
(� ������

!(#

A�?���
����@
y x x xn= ∗ ∗ ∗1 2 ...

Block Category: Arithmetic

The � block produces the product of the input signals. Inputs can be scalars or
vectors.

VisSim assigns ones to all unconnected inputs.

Multiplying vectors and matrices

To perform a single value summation of an element-by-element multiply of
two vectors, use the

���

��� block, as described on page 181.

To multiply two matrices, use the ����	��" block, as described on page
220.

Examples

1. Multiplication of two scalar inputs

Consider the equation y = 24 * 32, which can be realized as:

Two �
��� blocks provide the values 24 and 32. When connected to a �'block, the
product is 768.

2. Multiplication of a scalar and a vector

Consider the equation

y = 24 x

where x = [1 2 3]. This equation can be realized as shown on the next page.

����
���!#

�����
(� ������

!(�

A �������
��� block creates a three-element vector from the constant values 1, 2,
and 3. When the simulation runs, the � block multiplies all the elements of the
incoming vector line with the constant value 24.

3. Multiplication of vectors

Consider the equation:

w = x y z

where x = [-1 2 3], y = [3 -2 2], and z = [6 2 -7]. This equation can be realized as:

When the simulation runs, the � block performs an element-by-element
multiplication operation on the incoming vectors. For example, w(1) = x(1) * y(1) *
z(1), w(2) = x(2) * y(2) * z(2), and so on.

�B�?����
�@
y x= −

Block Category: Arithmetic

The ��'block negates the input signal. Input can be scalar, vector, or matrix.

����
���!#

�����
(� ������

!((

Examples

1. Negation of a scalar

Consider the equation y(t) = - sin(t), which can be realized as:

A ���� block is used to access simulation time t, a sin block generates sin(t), and a
�� block converts sin(t) to -sin(t). Both sin(t) and y(t) are plotted for comparison.

2. Negation of a vector

Consider the equation:

z = -x

where x = [-1 5.6 4]. This equation can be realized as:

A �������
����
� block creates a three-element vector from the constant values
-1, 5.6, and 4. When the simulation runs, the �� block performs an element-by-
element negate operation on the incoming vector.

3. Negation of a matrix

Consider the equation:

Z = -X

where X =
−

− −
−

















2 5.6 4

1.2 2.1 3.6

1 8.7 6.4

����
���!#

�����
(� ������

!(%

This equation can be realized as:

When the simulation runs, the �� block performs an element-by-element negate
operation on the incoming matrix.

C�?��&���@ �

y
x

x
= 1

2

Block Category: Arithmetic

The � block produces the quotient of the input signals. The inputs can be scalars or
vectors. On the connector tabs, “l” represents the numerator x1 and “r” represents the
denominator x2. If x1 is unconnected, VisSim feeds it a zero. If x2 is equal to 0 or
unconnected, VisSim displays a “Divide by 0” message and highlights the offending
block in red.

Performing matrix inversions

To perform matrix inversions, use the 	����� block, as described on page
198.

Examples

1. Division of two scalar inputs

Consider the equation y = 24/32, which can be realized as:

����
���!#

�����
(� ������

!(+

2. Division of a vector by a scalar

Consider the equation:

y = x/24

where x = [12 24 36]. This equation can be realized as:

When the simulation runs, the � block divides each element of vector x with the
constant value of 24.

3. Division of vectors

Consider the equation:

w = x/y

where x = [12 24 36] and y = [6 12 18]. This equation can be realized as:

When the simulation runs, the � block performs an element-by-element division
operation on the incoming vectors. For example, w(1) = x(1)/y(1), w(2) = x(2)/y(2),
and so on.

����
���!#

�����
(� ������

!(.

D�?�����
���@

y
x x

x x
=

<
≥





1 if

0 if
1 2

1 2

Block Category: Boolean

The . block produces an output signal of 1 if and only if input signal x1 is less than
input signal x2. Otherwise, the output is 0. On the connector tabs, “l” represents x1

and “r” represents x2.

If you click the right mouse button over the . block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simple if-then-else construct

Consider a variable y such that:

If t < 4 then y = 1; else y = 0

Assume that t is simulation time. This system can be realized as:

By multiplying a constant value 1 with the output of the . block, y is guaranteed to
assume a value of 0 until the inequality is true. When the inequality is true, y
assumes a value equal to the output of the � block.

����
���!#

�����
(� ������

!(1

2. Modified if-then-else construct

The previous example can also be realized as:

The key difference in implementation is the use of a ����� block rather than a �
block. The ����� block explicitly depicts the if-then-else structure; the � block is a
shortcut and can lead to confusion.

DE�?�����
����	���0����
	@

y
x x

x x
=

≤
>





1 if

0 if
1 2

1 2

Block Category: Boolean

The ./ block produces an output signal of 1 if and only if input signal x1 is less than
or equal to input signal x2. Otherwise, the output is 0. On the connector tabs, “l”
represents x1 and “r” represents x2. The ./ block accepts two scalar inputs.

If you click the right mouse button over the ./ block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simple if-then-else construct

Consider a variable y such that:

If x ≤ 0.5 then y = cos(3t); else y = 0

where t is simulation time. Let x be a unit step delayed by 7 sec, represented as
u(t - 7). This system can be realized as shown on the next page.

����
���!#

�����
(� ������

!(-

Until the onset of the step input at t = 7 sec, the Boolean inequality x ≤ 0.5 evaluates
to true, and y takes on a value of cos(3t). At t = 7 sec, the Boolean inequality
evaluates to false and remains false for the duration of the simulation. Consequently,
from this point onwards, y takes on the value of 0. The lower ��
� block monitors
the outputs of the �
� and ���	���� x blocks.

EE�?�0����
	@

y
x x

x x
=

=
≠





1 if

0 if
1 2

1 2

Block Category: Boolean

The // block is useful for evaluating the Boolean // equality. This block accepts
two scalar inputs labeled “l” (for x1)and “r” (for x2). The output of the // block is 1
if and only if input “l” is identically equal to input “r;” otherwise, the output is zero.

����
���!#

�����
(� ������

!%7

Boolean equality comparisons of floating point variables and non-
integer constants

As with programming in any language, it is generally not a good idea to
perform Boolean equality comparisons involving floating point variables
and non-integer constants. These types of comparisons should be converted
to Boolean inequality comparisons. (For example, {If position is equal to π,
then…}) should be converted to {If position is greater than or equal to < π
rounded off>, then…}.) The reason for this is because a floating point
variable, such as position, is rarely exactly equal to a non-zero non-integer
value, particularly if it is obtained by solving one or more equations.

If you click the right mouse button over the // block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Comparing constants

Consider a variable y such that:

If x = 0.5 then y = cos(2t); else y = 0

where t is simulation time. Let x be a step function of amplitude 0.5, delayed by 3
sec. This is usually represented as 0.5 u(t - 3). This system can be realized as:

Until the onset of the step input at t = 3 sec, the Boolean equality x == 0.5 evaluates
to false, and y takes on a value of 0. At t = 3 sec, the Boolean equality evaluates to
true, and remains true for the duration of the simulation. Consequently, from this

����
���!#

�����
(� ������

!%!

point onwards, y takes on the value of cos(2t). The lower ��
� block is used to
monitor the outputs of the �
� block and the ���	���� x.

2. Comparing a floating point variable with a non-integer constant

In a collision detection problem, if position x of a mass in motion is equal to π, then
a collision is assumed to have occurred with an immovable wall that is located at
x = π. Furthermore, the position of the mass is assumed to be given by the solution
of the following first order differential equation:

� sin()x x=

The initial condition is assumed to be x(0) = 3.0. It is tempting to realize this system
as:

From the result shown in the ��
� block, at around t = 7 sec, the mass arrives at the
boundary located at π. However, the collision detection logic, using an // block that
compares x with a constant value of π, never detects the collision. This is because
the final mass position, as obtained from the output of the 	�������
�, is
3.141592653, which is not equal to 3.14159.

It is clear from the ��
� block, that for all practical purposes, the mass collided with
the wall around t = 7 sec. To capture this reality in the simulation, convert the
Boolean equality comparison:

If x = 3.14159 then…

to a Boolean inequality comparison:

If x ≥ 3.1415 then…

����
���!#

�����
(� ������

!%#

After reducing the �
��� block to four decimal places with no round-off, the system
can be realized as:

Except for replacing the // block with the 0/ block, this diagram is similar to the
previous one. In this case, the collision detection logic detects a collision around
 t = 8 sec. Obviously, the time at which the collision is detected depends on the
number of decimal places retained for the π approximation.

FE�?�	
��0����
	@

y
x x

x x
=

≠
=





1 if

0 if
1 2

1 2

Block Category: Boolean

The 1/ block produces an output signal of 1 if and only if the two scalar input
signals are not equal. On the connector tabs, “l” represents x1 and “r” represents x2.

If you click the right mouse button over the 1/ block, the Boolean block menu
appears allowing you to assign a different function to the block.

����
���!#

�����
(� ������

!%�

Examples

1. Comparing constants

Consider a variable y such that:

If t ≠ 0.5 then y = cos(t); else y = 0

where t is simulation time. This system can be realized as shown on below.

Until the value of t reaches 0.5, the Boolean inequality t ≠ 0.5 evaluates to true, and
y takes on a value of cos(t). At t = 0.5 sec, the Boolean inequality evaluates to false,
and at the very next time step, returns to true, and remains true for the duration of the
simulation. Consequently, at the moment t = 0.5 sec, y takes on the value of 0, and at
every other point, y is equal to cos(t).

G�?����
���
���@

y
x x

x x
=

>
≤





1 if

0 if
1 2

1 2

Block Category: Boolean

The 0 block is useful in evaluating the Boolean 0 inequality. It accepts two scalar
inputs, labeled “l” and “r.” The output of the 0 block is 1 if and only if input
“l” > input “r;” otherwise the output is zero.

����
���!#

�����
(� ������

!%(

If you click the right mouse button over the 0 block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simple if-then-else construct

Consider a variable y such that:

If t > 2 then y = 7.2; else y = 0

Assume that t is simulation time. This system can be realized as:

By multiplying a constant value of 7.2 with the output of the 0 block, y is guaranteed
to assume a value of 0 until the inequality is true. When the inequality is true, y
assumes a value equal to the output of the � block.

2. Modified if-then-else construct

Using the above equation, it can also be realized as:

The key difference in implementation is the use of a ����� block rather than a �
block. The ����� block explicitly depicts the if-then-else structure, whereas the �
block is a shortcut and can lead to confusion.

����
���!#

�����
(� ������

!%%

GE�?����
���
����	���0����
	@

y
x x

x x
=

≥
<





1 if

0 if
1 2

1 2

Block Category: Boolean

The 0/ block produces an output signal of 1 if and only if input signal x1 is greater
than or equal to input signal x2. Otherwise, the output is 0. On the connector tabs, “l”
represents x1 and “r” represents x2. The 0/ block accepts two scalar inputs.

If you click the right mouse button over the 0/ block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simple if-then-else construct

Consider a variable y such that:

If x ≥ 0.5 then y = sin(t); else y = 1

where t is simulation time. Let x be a unit step delayed by 3 sec. This is usually
represented as u(t - 3). This system can be realized as:

Until the onset of the step input at t = 3 sec, the Boolean inequality x ≥ 0.5 evaluates
to false and y takes on a value of 1. At t = 3 sec, the Boolean inequality evaluates to

����
���!#

�����
(� ������

!%+

true and remains true for the duration of the simulation duration. Consequently, from
this point onwards, y takes on the value of sin(t).

!CB�?��&����@

y
x

= 1

Block Category: Arithmetic

The ��� block produces the inverse of the input signal. The input can be scalar,
vector, or matrix.

Computing the matrix inverse of a matrix

Use the 	����� block to compute the matrix inverse of a matrix. If a vector
or matrix is fed into an ��� block, the result will be an element-by-element
inversion of the vector or matrix (that is, [one divided by the element]
operation). This is not equivalent to a normal vector pseudo-inverse
operation or a normal matrix inverse operation.

Examples

1. Computation of 1/X of a scalar

Consider the equation y= 1/25, which can be realized as:

The incoming constant value of 25 results in 1/25 = 0.04.

2. Computation of 1/X of a vector

Consider the equation:

 z = 1/y

where y = [-1 5.6 4], and where an element-by-element inversion is implied. This
equation can be realized as:

����
���!#

�����
(� ������

!%.

An element-by-element inverse operation is performed on the three elements in the
�������
��� block.

3. Computation of 1/X of a matrix

Consider the equation:

Z = 1/ Y

where

















−
−−

−
=

6.48.71

3.62.11.2

45.62

Y

This can be realized as:

When the simulation runs, the ��� block performs an element-by-element inverse
operation on the incoming matrix.

�3�
y x=

Block Category: Arithmetic

The ��� block produces the absolute value of the input signal. The inputs can be
scalars, vectors, or matrices.

Examples

1. Absolute value of a scalar

Consider the equation y = abs (sin (t)), which can be realized as shown on the next
page.

����
���!#

�����
(� ������

!%1

The results in the two ��
� blocks show that the ��� block computes the absolute
value of the input signal.

2. Absolute value of a vector

Consider the equation:

 w = abs (x)

where x = [-7 1 -2.2]. This equation can be realized as:

When the simulation runs, the ��� block computes and outputs an element-by-
element absolute value of the vector x.

3. Absolute value of a matrix

Consider the equation:

 Z = abs(Q)

where 







−

−
=

3.32.2

17
Q . This equation can be realized as shown on the next page.

����
���!#

�����
(� ������

!%-

Four �
��� blocks provide the vector element values of Q through a
�������
����
� block. When the simulation runs, the ��� block computes the
element-by-element absolute value of the incoming matrix.

��	�
y x= arc cos

Block Category: Transcendental

The ��
� block produces the inverse cosine of the input signal. The output is an
angle in radians.

Examples

1. Computation of cos-1(1) = 0; cos-1(0) = π/2

This equation can be realized as:

Two ��
� blocks are used to compute the inverse cosines. For comparison, the
constant value of π/2 is generated by connecting two �
��� blocks, set to 22 and 14,
to the “l” and “r” inputs of a �'block. From the results obtained, the ��
� blocks
yield correct values for the angles.

����
���!#

�����
(� ������

!+7

���
y x x= 1 2bitwise AND

Block Category: Boolean

The ��
 block produces the bitwise AND of two to 256 scalar input signals.

If you click the right mouse button over the ��
 block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Three variable and

Consider a variable y such that:

If a ≠ 6 and b > 2.2 and c < 7, then y = cos(t); else y = 0

where t is simulation time. Furthermore, let t be the input to all three parameters a, b,
and c. This system can be realized as:

The output of the ��
 block is true only when all the three inputs are true. This
happens in the range t = (2.2, 7), except for the instant t = 6. This result is apparent
from the top ��
� block. The ���	���� y is equal to cos(t) in the range t = (2.2, 7).
At the instant t = 6, ���	���� a is momentarily false, and consequently, y = 0 at
t = 6, since the output of the ��
 block evaluates to false at that instant.

����
���!#

�����
(� ������

!+!

�����
�
Block Category:
Animation

The ��	���� block lets you animate an image during simulation. For more
information, see page 77.

����
y x= arc sin

Block Category:
Transcendental

The ��	� block produces the inverse sine of the input signal. The output is an angle
in radians.

Examples

1. Computation of sin-1(1) = π/2; sin-1(0) = 0

This equation can be realized as:

Two �
��� blocks, set to 0 and 1, are fed to the ��	� blocks. For comparison, the
constant value of π/2 is generated by feeding two �
��� blocks, set to 22 and 14,
into the “l” and “r” inputs of a �'block. From the results obtained, the ��	� blocks
yield correct values for the angles.

����
���!#

�����
(� ������

!+#

�
��#
y x x= 4 1 2quad arc tan (,)

Block Category: Transcendental

The ����2 block computes the four quadrant inverse tangent of the input signals.
The ����2 block uses the signs of both input signals to determine the sign of the
output signal. The output is an angle in radians.

Examples

1. Computation of tan-1(∝) = π/2

This equation can be realized as:

To convert radians to degrees, the angle in radians is multiplied by
(180/π) = 57.2958.

Since the ����2 block uses the value of x1, the signs of x1 and x2, and the ratio x1/x2

in computing the inverse tangent, the result depends on all these parameters. In the
current case, since the ratio is infinity, ����2 computes the inverse correctly to be
π/2 radians, or 90o. Also, in the current case, x1 can be any positive value, since its
ratio with 0 will be infinity, regardless of its value.

2. Computation of tan-1(-1): quadrant dependency

Using the same configuration in the above example, tan-1(-1) can be realized as:

����
���!#

�����
(� ������

!+�

Here, the angle obtained is -.7854 radians, or -45o, because the ����2 block
determines that the angle lies in the fourth quadrant. However, it is immediately
apparent that the same ratio of -1 can be obtained by flipping the signs on x1 and x2:

In this case, the ����2 block uses the relative signs of x1 and x2 to determine that the
angle lies in the second quadrant, and yields an angle of 180 - 45 = 135o, or 2.356
radians.

3�����
y xn= bessel

Block Category: Transcendental

The ������ block generates the Bessel function of order n.

Order: Sets the order of the Bessel function. Specify the order as an integer. The
default is 0.

Examples

1. Approximation of sin(a sin φ)

Bessel functions come up frequently in the analysis and solution of nonlinear
differential equations. Consider the following approximation:

sin(sin) () sin[()]a J a nn
n

φ φ= ++
=

∞

∑2 2 12 1
0

����
���!#

�����
(� ������

!+(

where a and φ are parameters, and Jm is a Bessel function of order m. Such
approximations are a part of the standard procedure for obtaining approximate
analytical solutions to equations of the type:

�� sin � cosu u u K t+ + =2εµ Ω

These equations are used in the harmonic analysis of forced oscillations of single
degree of freedom systems.

The above approximation can be realized as:

Two �
��� blocks produce π/4 and 0.5 as the values for φ and a, respectively. The
sine of phi is multiplied by a and the result is fed through another �	� block to
compute the exact solution.

Six �
��� blocks, set to 0 through 5, generate different terms of the infinite series
approximation. In this case, only the first six terms of the series are retained. Each of
these �
��� blocks is connected to a compound block, which has the following
internal structure:

The �
��� block feeds a value to a local ���	���� :n. The output of :n is
connected to a ��	� block set to 2. The output of the ��	� block, and the output of
a �
��� block set to 1, are fed into two inputs of a ����	�������	
� block. The
output of the ����	�������	
� block and the output of ���	���� phi are
connected to a � block, to compute the term (2n+1)φ. The ���	���� a is connected
to a ������ block whose internal order is set to the correct value (0, 3, 5, 7, 9, or 11,
depending on the value of :n).

����
���!#

�����
(� ������

!+%

At the top level, the outputs of the six compound blocks are summed using a six
input ����	�������	
� block, and the output of the ����	�������	
� block is
connected to a ��	� block set to 2. The output of the ��	� block is connected to a

	����" block.

From the results obtained, it is proven that by retaining the first six terms in the
approximation, very close agreement can be obtained with the actual value of
sin(a sin φ).

3�5��
Block Category: Annotation

The ��,�� block is an effective way to add background characteristics, such as
operator control panels, to your screen. Designed to be used in display mode, the
��,�� block accepts bitmaps or background color specifications. When display
mode is turned on, ��,�� blocks act as background and appear beneath other
blocks.

When display mode is turned off, you can resize a ��,�� block by dragging on its
borders. If a bitmap is associated with the ��,�� block, it initially assumes the size
of the bitmap. For solid color backgrounds, the chosen color fills in the bezel area
and can also be resized. When you turn on display mode, the sizing border goes
away.

File Name: Indicates the name of the .BMP file used as the background bezel. You
can type the file name directly into this box or select one using the Image button.

Color: Lets you use a solid color as the background for the bezel. To select a color,
activate Use Solid Color and click on the Select Color button to choose a color.
When Use Solid Color is not activated, the ��,�� block defaults to the name of the
.BMP file specified in the File Name box.

����
���!#

�����
(� ������

!++

3�22��
Block Category: Matrix Operations

The ��!!�� block places a sequence of values in a buffer based on the buffer
length, the time between successive samples, and the duration of the simulation. The
buffer block accepts a single scalar input and produces a single vector output. It is
useful for performing basic digital signal processing operations.

Buffer Length: Determines the number of samples; that is, the size of the buffer.

dT: Determines the time between successive samples; that is, the rate at which
samples of the incoming signal are collected and placed in the buffer.

Examples

1. Basic buffer operation

Consider the following ��!!�� block, with a buffer length of 4 and time between
successive samples of 0.01.

For simplicity, let the simulation step size be equal to 0.01. If the input to the
��!!�� is an arbitrary non-zero signal, such as a ���� signal, then after two
simulation time steps, the output of ��!!�� is a vector of length 4, with the first two
elements containing non-zero values and the remaining two still at zero. At the very
next time step, the simulation appears as:

����
���!#

�����
(� ������

!+.

The previous values are pushed down the vector by one cell, and the top cell is
occupied by the latest sample. Once the simulation goes beyond four time steps, the
output will be a full vector.

Obviously, if the input signal itself is zero for some points, those values will be
reflected accurately in the output.

2. Computation of FFT and inverse FFT

Consider a simple example, where a sinusoidal signal is converted to frequency
domain via FFT, and then reconstructed using the IFFT.

A �	���
	
 block generates a sinusoid signal with a frequency of 1 rad/sec. The
signal is passed through a ��!!�� block of length 128 samples and a time between
successive samples of 0.01. The output of the ��!!�� block is connected to an !!�
block, which computes a 128-sample FFT of the original sinusoid at a sampling rate
of 0.01.

The output of the !!� block is Fourier coefficients. The individual coefficients are
accessed using a ����
������ block. The first four coefficients are plotted to show
their variation with time.

Signal reconstruction is performed by feeding the output of the !!� block to an
	!!� block to compute the IFFT. The output of the 	!!� block is a vector of length
128 samples. The contents of this vector are just 128 sinusoid reconstructions, with
each sinusoid trailing the preceding sinusoid by an amount equal to the sampling
rate.

The first element in the 	!!� output vector does not have any delay because zero
time has elapsed between the FFT and IFFT phases. In most real-world situations,

����
���!#

�����
(� ������

!+1

however, there is a small, non-zero delay between the input signal and its
reconstruction that is introduced by the processor performing the numerical
computations of FFT and IFFT algorithms.

3�

	�
y = −state 1

Block Category: Signal Producer

The ����
� block lets you dynamically insert signal values during a simulation.

You can set the number of states that a ����
� block has, from two to a maximum
of 16. You can also associate a bitmap with any of the states. The ����
� block
toggles between white and red if it is a 2-state button and there are no bitmaps
associated with it.

The ����
� block also provides cycle through, pie area, push button horizontal, and
vertical hit testing.

Number Of States [2-16]: Indicates the number of states for the ����
� block.
The maximum allowable states is 16. The number of listed states in the States box is
determined by the value entered in the Number of States box.

Bitmaps: Lets you associate a bitmap file with the selected state. To make an
association:

1. From the States box, select a state.

2. In the File Name box, enter the bitmap file name to be associated with the state.
If you do not know the name or location of the file, click on the Image button to
select one. A picture of the selected bitmap appears to the right of the States
box.

����
���!#

�����
(� ������

!+-

Block Name: Indicates a name for the ����
� block. The name appears only when
there is no bitmap associated with the block.

Hit Testing: You have the choice of five hit testing methods.

• Cycle Through: Causes the state to increase by 1 each time you click the right
mouse button over the block. When the maximum state value is reached, the
next mouse click changes the state back to 0.

• Pie: Divides the block into a number of pie-shaped wedges equal to the number
of states. When you click the right mouse button over a particular wedge or
when you drag the mouse over the ����
� block, the state changes. States
advance in a clockwise direction with State 0 at the top.

• Vertical: Divides the block into a number of vertical wedges equal to the
number of states. When you click the right mouse button over a particular
wedge or when you drag the mouse over the ����
� block, the state changes.
State 0 corresponds to the bottom wedge; state N corresponds to the top wedge.

• Horizontal: Divides the block into a number of horizontal wedges equal to the
number of states. When you click the right mouse button over a particular
wedge or when you drag the mouse over the ����
� block, the state changes.
State 0 corresponds to the leftmost wedge; state N corresponds to the rightmost
wedge.

• Push Button: Activates state 1 while you hold down the mouse button. When
you release the mouse button, it activates state 0. Push button hit testing only
supports a two-state ����
� block.

����
y xn= +2

Block Category: Nonlinear

The ���� block lets you specify an unlimited number of execution paths based on
the value of a single input, called the case input value. The case input value is the top
input to the block and is labeled case. The remaining inputs are the possible
execution paths. They are labeled 0 through n.

The main application of the case block is in the construction of large nested if-else
decision structures, where regular if-else constructs using Boolean blocks become
too cumbersome.

When you want to output a particular element in a matrix, use the 	�
�� block.

����
���!#

�����
(� ������

!.7

Case input value: The following rules apply to values fed into the connector tab
labeled case:

• The case input value must be scalar. If a non-integer value is fed into it, it is
truncated. For example, 0.999 is truncated to 0.

• If the case input value targets an out-of-range input, the ���� block returns an
error. For example, an error results if the case input value is 5 for a four-element
���� block.

• If the case input value targets an unconnected input, the ���� block outputs a 0.

Scalar and matrix output: With the exception of the case input, all other inputs to
the ���� block can be scalar, vector, or matrix.

Examples

1. Implementation of five scalar branches

Consider the decision tree:

If J = 0, then Y = A;

else

If J = 1, then Y = B;

else

If J = 2, then Y = C;

else

If J = 3, then Y = D;

else

If J = 4, then Y = E;

If A, B, C, D, and E are assumed to be constant values equal to 7, 14, 21, 28, and 35
respectively, the decision tree can be realized as:

Six �
��� blocks produce values for the ���	���� blocks named J, A, B, C, D, and
E. The outputs of these ���	����� are connected to a ���� block, with J connected

����
���!#

�����
(� ������

!.!

to the case input, and ���	����� A, B, C, D, and E connected to inputs 0, 1, 2, 3,
and 4 respectively. The output of the ���� block is fed through a ���	���� named
Y and into a
	����" block.

Since J is set to 3, the ���	���� D is presented to the output as expected, and
consequently, Y takes on the value of D, namely 28.

2. Implementation of three matrix branches

Consider the following part of the decision tree presented above:

If J = 0, then Y = A;

else

If J = 1, then Y = B;

else

If J = 2, then Y = C;

If you let A, B, and C be:

A B C=








 =









 =











0 0

0 0

1 0

0 1

1 1

1 1
; ;

the decision tree can be realized as shown below.

Eight �
��� blocks generate the elements of the three matrices, represented as three
�������
����
� blocks. The ���	���� J is set to 1 and is fed into the case input
of a ���� block. The outputs of variables A, B, and C are wired to inputs 0, 1, and 2
of the ���� block. The output of the ���� block is connected to a ���	���� Y,
which is wired to a
	����" block.

����
���!#

�����
(� ������

!.#

Since J is set to 1, the contents of variable B are presented at the output of the case
block such that Y = B.

�	����

Block Category: Annotation

The �
����� block adds a comment to the diagram. When you position the pointer
over the block and click the right mouse button, the pointer changes into a vertical I-
beam, indicating that you’re in text-entry mode. As you insert text, VisSim
automatically scrolls the text if it runs out of room in the viewable region of the
block. To correct or remove text, use the DEL and BACKSPACE keys. To exit text-
entry mode, click the right mouse button on the �
����� block a second time.

You can also copy text from an application file into a �
����� block. For example,
to copy text from a WORD document, highlight the text to be copied and press
CTRL+V. In the �
����� block, position the I-beam where you want to insert the
text and press CTRL+C.

To retain the format of the copied text, activate the Use Rich Text Format under the
Preferences tab in the dialog box for the Edit > Preferences command. If Use Rich
Text Format is not activated, the text will revert to the text format specified with the
View > Fonts command.

When reading a comment, use the scroll bar to move text in and out of the viewable
region. To resize a �
����� block, drag on its edges.

�	��

y = constant value

Block Category: Signal Producer

The �
��� block generates a constant signal.

Value: Indicates the value of the output signal. The default is 1.

����
���!#

�����
(� ������

!.�

�	��
����

Block Category: Optimization

The �
�����	�� block is used to solve an implicit equation. For more information,
see Chapter 8, “Performing Global Optimization.”

�	�&��
�
Block Category: Arithmetic

The �
����� block converts the data type of the input signal to one of the
following: char, unsigned char, short, unsigned short, int, long, unsigned long, float,
or double. To check for overflow errors, activate Warn Numeric Overflow under the
Preferences tab in the dialog box for the Simulate > Simulation Properties command.

�	�
y x= cos

Block Category: Transcendental

The �
� block produces the cosine of the input signal. The input signal must be
represented in radians.

Examples

1. Computation of cos(2θ) = 2cos2(θ) - 1

With θ chosen to be π/3, the above trigonometric identity can be realized as:

����
���!#

�����
(� ������

!.(

�	��

y
x x

= + −e e

2

Block Category: Transcendental

The �
�* block produces the hyperbolic cosine of the input signal. The input signal
must be represented in radians.

Examples

1. Computation of cosh(2θ) = cosh2(θ) + sinh2(θ)

With θ chosen to be π, the above trigonometric identity can be realized as shown
below.

�	�

Block Category: Optimization

The �
�� block measures the cost function for parameter optimization. For more
information, see Chapter 8, “Performing Global Optimization.”

����
���!#

�����
(� ������

!.%

��	��*�
��

y

x

x=
−






1

0

if crosses crosspoint with neg. slope

1 if crosses crosspoint with pos. slope

otherwise

Block Category: Nonlinear

The ��
�������� block monitors its input value and compares it with a user-
specified crosspoint. When the input value crosses the crosspoint, the ��
��������
block outputs either +1 or -1, depending on whether the crossover occurred with a
positive slope or negative slope, respectively. If a crossover is not detected, the
��
�������� block outputs 0.

Cross Point: Represents the value that, when x crosses it, causes the output signal
to go to 1, -1, or 0. The default is 0.

Examples

To obtain correct results from the examples described below, increase the point
count for the ��
� blocks to at least 1,000.

 1. Detection of zero crossover of a sinusoid

Consider the equation:

y = 1 if sin(t) = 0, else y = 0

����
���!#

�����
(� ������

!.+

This equation can be realized as:

As can be seen from the ��
�������� block output, three 0 crossings are detected
in the simulation. The first and third 0 crossings occur with negative slope (that is,
the value of sin(t) is decreasing, as it approaches zero), while the second 0 crossing
occurs with positive slope (that is, the value of sin(t) is increasing as it approaches
zero.) Consequently, the first and third 0 crossing events are -1, and the second 0
crossing event is + 1.

However, since y is required to be equal to +1 whenever sin(t) = 0, irrespective of
the slope, the output of the ��
�������� block is passed through an ��� block to
extract the absolute value, and this output is defined as the ���	���� y. The bottom
��
� block shows that y = 1 when sin(t) = 0; otherwise y = 0.

2. Detection of non-zero crossover with externally set crosspoint

Consider the equation:

y = 1 if sin(t) = 0.5, else y = 0

This equation can be realized exactly as above by setting the internal crosspoint on
the ��
�������� block to 0.5. Unfortunately, this may not be acceptable in some
cases, particularly when the crosspoint itself is to be computed as a part of the
simulation. In such cases, the crosspoint must be set externally, as shown below:

����
���!#

�����
(� ������

!..

The key difference here is that the output of the �	� block is connected to a
����	�������	
� block, which computes the difference between sin(t) and a
���	���� called desired cross point. This difference is connected to the
��
�������� block, which has an internal crosspoint of 0.

In effect, a non-zero crossover detection problem is converted to a 0 crossover
detection problem. That is, the problem of y = 1 when sin(t) = 0.5 is converted to
y = 1 when sin(t) - 0.5 = 0. The rest of the diagram is identical to the previous one.

����
���!#

�����
(� ������

!.1

��
�
Block Category: Annotation

The
��� block displays the current date and time. The date and time are updated
when you move a block, print the diagram, or repaint the screen. If you need to reset
the time or date, use the system Control Panel. For more information, see the
Microsoft Windows User’s Guide.

**/
Block Category:�DDE

The ��# block exchanges information with another Windows application. Use this
block when you want to create a link that sends information to and receives
information from another application. You can create links between VisSim and
other applications that support DDE.

For more information on the ��# block, see page 119.

**/�����&�
Block Category: DDE

The ��#����	�� block creates a DDE link that passes information from a Windows
application (referred to as the source or server) into a block diagram (referred to as
the destination or client).

For more information on the ��#����	�� block, see page 115.

**/����
Block Category: DDE

The ��#���
 block creates a DDE link that passes information from a block
diagram (referred to as the source or server) to another Windows application
(referred to as the destination or client).

For more information on the ��#���
 block, see page 117.

����
���!#

�����
(� ������

!.-

����3���

y

x

x x
=

≤

− 














0 if
deadband

sign ()
deadband

otherwise

2

2

Block Category: Nonlinear

The
��
���
 block produces an output signal, which is the input signal reduced by
a zone of lost motion about the signal’s 0 value. Use this block to simulate play in
mechanical systems, such as gears or chains.

Dead Band: Indicates the width of the zone of lost motion about the input signal’s
0 value. The default is 0.2.

����&�
�&�

Block Category: Toolbar

The
��	���	�� block appears on the toolbar () when you install VisSim 3.0b+.
It calculates the change in function value with respect to time.

����
���!#

�����
(� ������

!17

The
��	���	�� block has two inputs: step size and signal. The step size indicates
the sampling rate of the derivative. It must be greater than zero. When the step size is
large with respect to the function, the signal can become unstable. When you
integrate the output of the
��	���	�� block, you will see degradation in the
signal.

�������
display = x1

Block Category: Signal Consumer

The
	����" block displays the current value of the input signal in any number of
significant digits. You can select a color for the displayed value, as well as a
background color for the block.

The
	����" block automatically expands to display vector and matrix elements in
individual cells.

Value: Controls the current value in the display. The default is 1.

Display Digits: Indicates the number of displayed significant digits. The value you
enter overrides the setting of the High Precision Display parameter under
Preferences in the dialog box for the Edit > Preferences command. The default is 6.

Allow Room For Exponential Notation: Expands the
	����" block so there is
room for exponential notation. If you wish to have a very small
	����" block,
perhaps for use in display mode, you should turn off this option.

Color: Applies background and foreground color to the
	����" block. Click on
the Foreground and Background buttons to select a color. The selected colors are
displayed to the right of the buttons. To override the background color selected using
the View > Colors command, activate Override Default Color.

����
���!#

�����
(� ������

!1!

�	
)�	���
�

y x x
K

N

K K= ×
=1

1 2Σ
Block Category: Matrix Operations

The

���

��� block produces a single value summation of an element-by-
element multiply. The

���

��� block accepts two vector inputs and produces a
scalar output. If the input vectors have an uneven number of elements, an error
occurs.

Multiplying scalars and matrices

To multiply two or more scalars, use the � block, as described on page 142.

To multiply two matrices, use the ����	��" block, as described on page
220.

��3��

The ����
 block lets you embed a multi-level block diagram in the current block
diagram. For more information, see page 127.

���	�
errorcondition = x1

Block Category:
Signal Consumer

The ���
� block flags an error in a simulation. When the input signal becomes non-
zero, the ���
� block and all compound blocks which contain it are highlighted in
red and the simulation is stopped.

You can reset the error condition by clicking the right mouse button on the ���
�
block.

����
���!#

�����
(� ������

!1#

� �

y x= e

Block Category: Transcendental

The ��� block performs the inverse operation of the �� block and raises the input as
a power of e. The irrational number e is the base of natural logarithms and is
approximately equal to 2.7182828.

Examples

1. Computation of the value of e

The value of e can be obtained by providing an input value of 1 to an ��� block as:

� �	�

data file columnn nx=

Block Category: Signal Consumer

The ���
�� block writes signals to a file in .DAT, .M, .MAT, or .WAV file format.
The file can subsequently be used as input to VisSim or to a variety of other
programs, such as MatLab and Microsoft Excel. For more information, see page
111.

� ������	�

The �������	
� block allows you to enter a C expression that VisSim parses and
acts upon. With expressions, you can significantly reduce the number of blocks in
your diagrams. For example, consider the simple equation:

x y z+ =sin()

����
���!#

�����
(� ������

!1�

Without the �������	
� block, the block diagram representation of this equation
is:

Instead of using the ���	����, �	�, and ����	�������	
� blocks, you can create
a single C expression that performs the same function:

The elements $1 and $2 are VisSim-specific notation that reference the inputs.

What you can do with expression blocks:

• Speed up simulation time

The more blocks in a diagram, the longer it takes to simulate to the diagram.
Consequently, as you replace series of blocks with �������	
� blocks, the
simulation time decreases.

• Reduce development time

Instead of inserting groups of blocks and wiring them together, you can insert a
single �������	
� block that performs the same function.

• Simplify troubleshooting

You can request that VisSim check the logic of the expression before you simulate
the diagram. You simply press a key and VisSim does the rest.

Writing an expression: The Expression Properties dialog box lets you set up your
expression.

����
���!#

�����
(� ������

!1(

Expression Text: Indicates a C expression. A C expression consists of one or more
operands and zeros or more operators linked together to compute a value. You enter
expressions according to the syntax rules for the C language. If you’re unfamiliar
with the language, refer to C: A Software Engineering Approach, (Springer-Verlag,
1990).

The following VisSim-specific rules apply to entering C expressions:

• Inputs are referenced using the notation $n, where n represents an connector
number. For example, $1 is input 1 (the top input connector), $2 is input 2 (the
second from the top input connector), and so on.

• Only one output value is allowed.

Parse Errors: Lists the errors that occur when VisSim parses the C expression.
This is a read-only box.

Examples

1. Computation of cos2(θ) + sin2(θ) = 1

If θ is chosen to be π/3, the above expression can be realized as:

The same equation can be realized using an �������	
� block as:

Here, the expression cos2(θ) + sin2(θ) is entered directly into the �������	
� block
as cos($1) * cos($1) + sin($1) * sin($1), where $1 corresponds to the only input on
the �������	
� block. When the simulation runs, VisSim substitutes $1 in the
expression with the top input connected to it and then evaluates the expression.

From the results obtained, both methods yield the correct answer.

22
�
Block Category: Matrix Operation

The !!� block converts data from time domain to frequency domain.

����
���!#

�����
(� ������

!1%

The !!� block computes an n-sample FFT at every simulation time step, where n is
the length of the input vector.

If the input to the !!� block is not an integral power of 2, automatic zero padding is
performed to make the input vector size an integral power of 2. This is a standard
procedure in FFT computation. The output of the !!� block is Fourier coefficients.
Individual coefficients can be accessed using a ����
������ block.

Examples

1. Computation of FFT and inverse FFT

Consider a simple example, where a sinusoidal signal is converted to frequency
domain via FFT, and then reconstructed using inverse FFT.

A �	���
	
 block generates a sinusoid signal with a frequency of 1 rad/sec. The
signal is passed through a ��!!�� block of length 128 samples and a dT of 0.01.
The output of the ��!!�� block is connected to an !!� block, which computes a
128-sample FFT of the original sinusoid at a sampling rate of 0.01.

The output of the !!� block is Fourier coefficients. The individual coefficients are
accessed using a ����
������ block. The first four coefficients are plotted to show
their variation with time.

Signal reconstruction is performed by feeding the output of the !!� block to an
	!!� block to compute the inverse FFT. The output of the 	!!� block is a vector of
length 128 samples. The contents of this vector are just 128 sinusoid reconstructions,
with each sinusoid trailing the preceding sinusoid by an amount equal to the
sampling rate.

����
���!#

�����
(� ������

!1+

The first element in the 	!!� output vector does not have any delay because zero
time has elapsed between the FFT and inverse FFT phases. In most real-world
situations, however, there is a small, non-zero delay between the input signal and its
reconstruction that is introduced by the processor performing the numerical
computations of FFT and inverse FFT algorithms.

����
y x= ⋅ gain

Block Category: Arithmetic

The ��	� block multiplies the input signal, by the gain amount. The input can be a
scalar, vector, or matrix.

Gain: Indicates the constant multiplier of the input signal. The default is 1.

Examples

1. Gain of a scalar

Consider the equation y(t) = 3 sin(t), which can be realized as:

����
���!#

�����
(� ������

!1.

A ���� block is used to access simulation time t, a �	� block generates sin(t), a
��	� block amplifies sin(t) to 3 sin(t). Both sin(t) and y(t) are shown in ��
� blocks
for comparison.

2. Gain of a vector

Consider the equation:

z = 7 x

where x = [-1 5.6 4]. This equation can be realized as:

The ��	� block performs an element-by-element gain operation on the incoming
vector.

3. Gain of a matrix

Consider the equation:

 Z = 4.2 X

where X =
−

− −
−

















2 5.6 4

1.2 2.1 3.6

1 8.7 6.4

This equation can be realized as:

The ��	� block performs an element-by-element gain operation on the incoming
matrix.

����
���!#

�����
(� ������

!11

��������
Block Category: Random Generator

The �����	�� block creates a normally distributed, random noise signal. You
specify a random seed value under the Preferences tab in the dialog box for the
Simulate > Simulation Properties command.

Mean: Indicates the center of the distribution. The default value is 0.

Standard Deviation: Indicates the distance from the mean, which covers one
standard deviation. The default value is 1.

��	3���	��
����

Block Category: Optimization

The ��
���
�����	�� block provides side constraint information when writing
your own global optimizer. For more information, see Chapter 8, “Performing
Global Optimization.”

���
	����
Block Category: Signal Consumer

The *	��
���� block shows how data are distributed over the course of a
simulation. For more information, see page 73.

����
���!#

�����
(� ������

!1-

�22
�
Block Category: Matrix Operation

The 	!!� block converts data from frequency domain to time domain. The 	!!�
block computes an n-sample inverse FFT at every simulation time step, where n is
the length of the input vector.

If the input to the 	!!� block is not an integral power of 2, automatic zero padding
is performed to make the input vector size an integral power of 2. This is a standard
procedure in inverse FFT computation. The output of the 	!!� block is Fourier
coefficients. Individual coefficients can be accessed using a ����
������ block.

Examples

1. Computation of FFT and inverse FFT

Consider a simple example, where a sinusoidal signal is converted to frequency
domain via FFT, and then reconstructed using inverse FFT.

A �	���
	
 block generates a sinusoid signal with a frequency of 1 rad/sec. The
signal is passed through a ��!!�� block of length 128 samples and a sampling rate
of 0.01. The output of the ��!!�� block is connected to an !!� block, which
computes a 128-sample FFT of the original sinusoid at a sampling rate of 0.01.

The output of the !!� block is Fourier coefficients. The individual coefficients are
accessed using a ����
������ block. The first four coefficients are plotted to show
their variation with time.

����
���!#

�����
(� ������

!-7

Signal reconstruction is performed by feeding the output of the !!� block to an
	!!� block to compute the inverse FFT. The output of the 	!!� block is a vector of
length 128 samples. The contents of this vector are just 128 sinusoid reconstructions,
with each sinusoid trailing the preceding sinusoid by an amount equal to the
sampling rate.

The first element in the 	!!� output vector does not have any delay because zero
time has elapsed between the FFT and inverse FFT phases. In most real-world
situations, however, there is a small, non-zero delay between the input signal and its
reconstruction that is introduced by the processor performing the numerical
computations of FFT and inverse FFT algorithms.

���	�

yn n= data file column

Block Category: Signal Producer

The 	��
�� block imports data points from a .DAT, .M, .MAT, or .WAV file and
translates them into output signals. The data can be either fixed interval or
asynchronous. For more information, see page 109.

����

Block Category: Annotation

Like the ���� block, the 	�
�� block provides an unlimited number of execution
paths based on the value of a single input. With the 	�
�� block, however, all the
execution paths are contained in a vector or matrix. The top input to the 	�
�� block
points to the matrix or vector element to be output. The bottom input to the 	�
��
block is the matrix or vector from which the output is selected.

����
���!#

�����
(� ������

!-!

For example, a 6 × 1 vector fed into the 	�
�� block yields six possible execution
paths:

The 	�
�� block outputs 1, 2, 3, 4, 5, or 6 depending on whether the index value is
1, 2, 3, 4, 5, or 6, respectively. In this example, the index value is 3, causing a 3 to
be output.

It is important to know how an index value references matrix elements. Index values
map to matrix elements in sequential order, starting with the element in column1-
row1, through column1-rowN; then column2-row1 through column2-rowN; and so
on. For example, in the following 2 × 3 matrix, an index value of 3 yields 5:

INDEX VALUE 1: 1 INDEX VALUE 4: 2

INDEX VALUE 2: 3 INDEX VALUE 5: 4

INDEX VALUE 3: 5 INDEX VALUE 6: 6

In a 3 × 2 matrix, an index value of 3 yields 2:

1 2 3

4 5 6

Index value: The following rules apply to the index value:

• Index values that are non-integers are truncated. For example, 0.999 is truncated
to 0.

• If the index value targets an unconnected matrix or vector element, the 	�
��
block outputs a 0.

• If the index value targets an out-of-range matrix or vector element, the 	�
��
block outputs spurious results. For example, if the index value is 5 for a four-
element matrix, the output, might look something like this: 1.06983e-306.

����
���!#

�����
(� ������

!-#

��

y x= integer part

Block Category: Nonlinear

The 	�� block accepts a scalar input and outputs only the integer portion of the
input. The 	�� block does not perform numerical round-off operations. Thus, an
input of 2.9999 yields 2. Inputs can be scalar constants or scalar variables.

Examples

1. Integer portions of scalar inputs

Consider three scalar inputs 1.7, 2.9999, and 3.0001. These inputs are applied to the
	�� blocks, as shown below:

The 	�� blocks isolate and output the integer portion of the scalar inputs.

��
����
	��?!C�@

y x dt
t

t

=

start

end

∫
Block Category: Integration

The 	�������
� block performs numerical integration on the input signal using the
integration algorithm (Euler, trapezoidal, Runge Kutta 2d and 4th orders, adaptive
Runge Kutta 5th order, adaptive Bulirsh-Stoer, and backward Euler (Stiff))
established with the Simulate > Simulation Properties command.

����
���!#

�����
(� ������

!-�

The 	�������
� block is one of the most fundamental and powerful blocks in
VisSim. This block, together with the �	�	��
$�������
� and
�����$�������
� blocks, offer the power to solve an unlimited number of
simultaneous linear and nonlinear ordinary differential equations.

Initial Condition: Indicates the initial value of the integrator. The default value
is 0.

ID: Represents an identification number for the block. It keeps track of the state
number that VisSim assigns to the integrator. The number of states in any block
diagram equals the number of integrators. The default value is 0.

Checkpoint State: Contains the value of the integrator state at the checkpoint. If
you have not checkpointed your simulation using the Simulate > Simulation
Properties command, the value is 0.

Examples

1. Solving a first order ODE

Consider the simple first order linear differential equation:

� ()y y r t+ =

where r(t) is an external input. In this case, assume that the external input to the
system is a step function. In VisSim, such equations are best solved by numerical
integration.

The first step is to isolate the highest derivative term on one side. To understand the
procedure better, it is easier to think of isolating the highest derivative term on the
right-hand side as:

r t y y() �− =

This equation can be constructed as:

����
���!#

�����
(� ������

!-(

Here, three ���	���� blocks are used for r(t), y, and ydot.

The second step is to integrate the highest derivative term a sufficient number of
times to obtain the solution. Since the highest derivative is of first order, ydot must
be integrated once to obtain y. This can be realized as:

The overall simulation is shown below.

The result shown in the ��
� block indicates the solution of the differential equation
subjected to a step external forcing function.

����
���!#

�����
(� ������

!-%

2. Setting the integrator initial condition internally

Consider the same problem above with the assumption that y(0) = 3. In this case, in
addition to the external input r(t), the system response also depends on y(0). This
initial condition can be set directly in the 	�������
� block. The result for this case
is:

The ��
� block shows that the response y(t) begins at y(0) = 3 and settles down to
1 for t > 4.5, as expected.

It is important to note that the initial condition on any state (or variable) must be set
on the 	�������
� block that is generating that state. (This concept becomes
clearer in Example 4.)

3. Setting the integrator initial condition externally

Consider once again the following ordinary differential equation:

 � ()y y r t+ =

Let r(t) be a step function and assume that y(0) = -3.2. The initial condition can be
set externally, as shown on the next page.

����
���!#

�����
(� ������

!-+

In this configuration, make sure that the internal initial condition of the 	�������
�
is set to zero. By default, all 	�������
�� have zero initial condition.

The results indicate that the solution of the ordinary differential equation, subject to
the external input and the initial conditions, is computed correctly.

4. Second order nonlinear ODE with external initial conditions

Consider a second order nonlinear system given by:

�� � ()y yy y r t+ + =2

Furthermore, assume that r(t) is a unit step function and that the initial conditions are
given by:

y() .0 10= and �() .y 0 12=

The first step is to isolate the highest derivative term on the right-hand side as
r t yy y y() � ��− − =2 . This segment can be coded in VisSim as shown below:

The second step is to integrate ydotdot twice: once to generate ydot, and once more
to generate y. As can be imagined, it is crucial to maintain consistent variable names

����
���!#

�����
(� ������

!-.

throughout. Furthermore, the initial conditions must be added using the same
procedure described in Example 3. This segment can be realized as:

The complete solution for this problem is given by:

The solution of the equation, y(t) is shown in the ��
� block.

This example illustrates the real power of numerical integration using VisSim. If you
want to use the results of a computational segment in a given VisSim diagram as
initial conditions for one or more integrators, replace the �
��� blocks with
appropriate ���	���� blocks when setting the external initial conditions.

����
���!#

�����
(� ������

!-1

��&��
�

[]A
A
A

− =1 adj()

()det

Block Category: Matrix Operation

The 	����� block inverts a square matrix using singular value decomposition. The
	����� block accepts one vector input and produces one vector output.

��3��

Block Category: Annotation

The ����� block lets you insert floating labels in a block diagram. You can choose
the text attributes for the label, as well as a colored background.

The ����� block is particularly useful for tagging signals.

����
���!#

�����
(� ������

!--

Label: Specifies a label. To continue a label to a new line, hold down the CTRL key
while you simultaneously press the ENTER key.

Attributes: Assigns a background color and text attributes to the label. Click on the
Background Color button to select a background color for the label. Click on the
Fonts button to select a font, font style, point size, color, and special effects for the
text. A sample of the text is displayed in the Sample box.

To override the selections in the View > Colors and View > Fonts dialog boxes,
activate Override Default Colors and Override Default Font, respectively.

����

y

x

x

x

=

red if > ub

green if lb ub

blue if < lb

1

1

1

≤ ≤










Block category: Signal Consumer

The �	�*� block is a tri-state alarm that glows a color, displays a bitmap image, or
plays sound when supplied with a signal. By default, the �	�*� block glows red
when the signal is greater than the upper bound; blue when the signal is less than the
lower bound; and green when the signal is less than or equal to the upper bound and
greater than or equal to the lower bound.

Associating an action with a state: To associate an action — for example, the
display of a bitmap image file — with a given state, select the state from the Settings
box; then click on the Bitmap button and choose the .BMP file to be associated with
the state.

Setting up a light block: The �	�*� block’s Properties dialog box lets you control
its audio and visual alarms.

����
���!#

�����
(� ������

#77

Properties: Establishes the lower and upper bounds for the signal, as well as the
initial setting of the signal.

• Value: Indicates the initial setting for the signal. The default is 0.

• Lower Bound: Indicates the lower bound for the signal. When the signal is less
than the specified lower bound, the �	�*� block performs the action (emits a
color, sound, or image) associated with the Lower setting. The default is 0.

• Upper Bound: Indicates the upper bound for the signal. When the signal is
greater than the specified upper bound, the �	�*� block performs the action
(emits a color, sound, or image) associated with the Upper setting. The default
is 0.5.

Settings: Indicates the setting to which color, sound, or an image is to be applied.

• Lower: The signal is less than the specified lower bound.

• Safe: The signal is less than or equal to the specified upper bound and greater
than or equal to the specified lower bound.

• Upper: The signal is greater than the specified upper bound.

Associations: Indicates whether an image, sound, or color is to be applied to the
specified setting.

• Image: Opens the File Select dialog box in which to choose a .BMP file to
associate with the selected setting.

• Sound: Opens the File Select dialog box in which to choose a .WAV file to
associate with the selected setting.

• Color: Opens the Color dialog box in which to choose a color to associate with
the selected setting.

Play Sound: Plays the sound for the selected setting.

Beep If Value Exceeds Upper Bound: Forces the �	�*� block to beep when the
signal exceeds the specified upper bound.

����
���!#

�����
(� ������

#7!

����

y

x x

x

x

=

if lb ub

lb if < lb

ub if > ub

1 1

1

1

≤ ≤






Block Category: Nonlinear

The �	�	� block limits the output signal to a specified upper and lower bound. The
�	�	� block accepts a scalar input. If the input is less than the lower bound, the
�	�	� block limits the output to the lower bound. Similarly, if the input is greater
than the upper bound, the �	�	� block limits the output to the upper bound. If the
input falls within the specified bounds, the input is transferred to the output
unchanged.

The �	�	� block is particularly useful for simulating variables or processes that
reach saturation.

Lower Bound: Indicates the lowest value that the output signal can attain. The
default is -100.

Upper Bound: Indicates the highest value that the output signal can attain. The
default is 100.

Examples

1. Simulation of saturation

Consider a variable y such that:

y t= sin()

Furthermore, assume that y reaches saturation at +0.7 and -0.7. This equation can be
realized as shown on the next page.

����
���!#

�����
(� ������

#7#

From the results in the two ��
� blocks, the output of the �	�	� block is identical
to the input, when the input is within the bounds (-0.7 to +0.7). When the input is out
of these bounds, the output is limited to the upper or lower bound values.

����
��
�
����
	��?!C�@

y

dt x x dt x

x x dt x

x x dt x

t

t

t

t

t

t

t

t

=

x if

if

if

1 2 3

2

start

end

start

end

start

end

start

end

∫ ∫

∫

∫

>

<



















≥ ≥1

2 1

3 1 3

Block Category: Integration

The �	�	��
$�������
� block integrates the input value and limits the internal
state to specified upper and lower limits. If the integral state reaches its limit, it

����
���!#

�����
(� ������

#7�

backs off the limit as soon as the derivative changes sign. You set the integration
algorithm with the Simulate > Simulation Properties command. Available algorithms
are Euler, trapezoidal, Runge Kutta 2nd and 4th orders, adaptive Runge Kutta 5th
order, adaptive Bulirsh-Stoer, and backward Euler (Stiff).

The inputs to the block are x1, the derivative; x2 (U), the upper limit; and x3 (L), the
lower limit.

The �	�	��
$�������
� block is used in the prevention of wind-up in PI and PID
controllers in control applications. It is also used in kinematics, electrical circuits,
process control, and fluid dynamics.

Initial Condition: Indicates the initial value of the integrator. The default is 0.

ID: Represents an identification number for the block, which holds the state number
that VisSim assigns to the integrator. The number of states in any block diagram
equals the number of integrators. The default is 0.

Checkpoint State: Contains the value of the integrator state at the checkpoint. If
you have not checkpointed your simulation using the Simulate > Simulation
Properties command, the value is 0.

Examples

1. Integration with constant limits

Consider a system whose dynamics are given by the differential equation:

� sin()x t=

Furthermore, assume that x must lie in the limits 5 ≤ x ≤ 6 and that x(0) = 5. This
system can be realized as shown on the next page.

����
���!#

�����
(� ������

#7(

During simulation, the �	�	��
$�������
� block limits the output to be within
the upper and lower limits, namely 6 and 5, respectively.

2. Integration with time-varying limits

Consider a system whose dynamics are given by the differential equation:

� sin()x t=

 Furthermore, assume that x must lie in the limits 0.2t ≤ x ≤ 2t and that x(0) = 0. This
system can be realized as:

A ���� block is used to access simulation time, t; simulation time is then used to
feed the �	� block, and two ��	� blocks, set to 2 and 0.2, to generate the time-

����
���!#

�����
(� ������

#7%

varying upper and lower limits. During simulation, the time-varying limits and the
output of the �	�	��
$�������
� block are displayed in the ��
� blocks.

����*��,
Block Category: Animation

The �	������ block lets you animate a line during simulation. You define the line
by specifying two sets of x,y coordinate endpoints. You can also set the color,
thickness, and style of the line. For more information, see page 81.

�	�!7
y x= log10

Block Category: Transcendental

The �
��3 block generates the log base 10 of the input signal. The logarithm of 0 to
any base is undefined. The logarithm of any number, when the base is the same
number, is 1.

Examples

1. Computation of log10 y = loge y / loge 10

With y chosen to be 100, and e as the base of the natural logarithm, this equation can
be realized as:

From the results obtained, log10 y = loge y / loge 10 where e is the base of the natural
logarithm. It can further be proved that loga y = logb y / logb a, where a, b, and y are
any positive non-zero numbers.

����
���!#

�����
(� ������

#7+

��
y x= loge

Block Category: Transcendental

The �� block generates the natural (Naperian) log of the input signal.

Examples

1. If ln(y) = x, then ex = y

With y chosen to be 10, and e as the base of the natural logarithm, this equation can
be realized as:

The ��� block raises its input as a power of e, the base of natural logarithm. The
quantity e is an irrational number, which is approximately equal to 2.718281828.
From the results obtained, if ln(y) = x, then ex = y, where e is the base of the natural
logarithm.

���
y y y x

y x x

y x x x

n1 2

2

1 2 3

1

2

3

(...) ()

,) ()

(, ,) ()

= −
= −
= −

table lookup D

table lookup(D

table lookup D
1

Block Category: Nonlinear

The ��� block performs piecewise linear interpolated 1- 2-, and 3-dimensional table
look-ups. This means that you can encapsulate nonlinear behaviors through direct
measurements. You can, for example, use laboratory data or a manufacturer’s
component performance data directly in a simulation.

The ��� block searches the input vector, starting at the last look-up input value to
avoid table search overhead.

����
���!#

�����
(� ������

#7.

The ��� block uses a multi-column ASCII data file to map input signals to a desired
output domain. Numbers can be separated by commas, spaces, tabs, vertical bars,
colons, semicolons or slashes. One-dimensional maps have one independent
variable, but can have from one to 16 dependent variable outputs. Two-dimensional
maps have two independent variables and one dependent variable output. Three-
dimensional maps have three independent variables and one dependent variable
output.

Dependent variables are linearly interpolated for independent variable values
between map points, and linearly extrapolated for values beyond the bounds of the
table using the last two points in the table. This feature can be used for static
function approximation with measured data or for device calibration, such as
thermocouple-voltage-to-temperature conversion.

Use the ���
�� block to create map files in VisSim.

Map File Name: Indicates the name of the map file. You can type in a file name
directly into this box or select one using the Select File button.

To open the specified file with the default text editor, click on the Browse Data
button.

Map Dimensions: Controls the dimensionality of the map file.

• 1-D Mapping: Indicates 1-D mapping capability. VisSim includes the number
of columns and rows in the selected map file, and the first and last numbers in
the first column of the selected map file to the right of this parameter.

 In 1-D mapping, the first column is an independent variable range. The numbers
in the independent variable column must be either in increasing order or
decreasing order, but not both. Each additional data column you supply in the
map file yields an additional dependent variable. Use the Edit > Add Connector

����
���!#

�����
(� ������

#71

command to add an output connector tab for each dependent variable column in
the ��� block. The topmost output connector tab corresponds to the leftmost
dependent variable column in the table, the second from the top corresponds to
the second from the left, and so on.

 A 1-D matrix is limited to 8000 rows.

 The numbers to the right of the 1-D Mapping parameter refer to the
dimensionality and range of the map vector. For example, 10x1[1:100]
represents a 1-D table with 10 elements ranging from 1 to 100.

 Lines that begin with a prefix of “;” are treated as comments.

• 2-D Mapping: Provides simultaneous mapping for two independent variables.
The format of a 2-D map file is as follows: the first row contains the domain
points for the first independent variable (the topmost connector tab on the ���
block), the first column (excluding the column member in row 1) represents the
second independent variable, and the (1,1) position must be left blank. Like 1-D
mapping, the independent variable values must be either monotonically
increasing or decreasing.

 A 2-D matrix is limited to 90 rows by 90 columns (or, a maximum of 89 * 89
data points).

 Lines that begin with a prefix of “;” are treated as comments.

 An example of a 2-D map file is shown below.

 10 11 20 25

 -5 -5 -2 1 20

 2 2 5 7 10

 3 3 7 8 5

 4 4 9 10 2

 5 5 11 15 -5

 In the above matrix, the first row represents the domain points of the first
independent variable, and the first column represents the domain points of the
second independent variable. The entries represent the dependent variable
values at the corresponding values of independent variables 1 and 2. For
example, for x1 = 10, x2 = 2, the output is 2; for x1 = 10.5, x2 = 2.5, the output
is 4.25.

 The numbers to the right of the 2-D Mapping parameter refer to the
dimensionality and range of the map vector. For example, 10x50[10:20, -10:10]
represents a 2-D table with 10 columns and 50 rows, where the minimum

����
���!#

�����
(� ������

#7-

column is 10, the maximum column is 20, the minimum row is -10, and the
maximum row is 10.

• 3-D Mapping: Provides simultaneous mapping of three independent variables.
The format of the first seven lines is as follows:

Line Format

Line 1 Starts with #3D

Line 2 Indicates the size of dimension 1

Line 3 Indicates the interpolation points of dimension 1

Line 4 Indicates the size of dimension 2

Line 5 Indicates the interpolation points of dimension 2

Line 6 Indicates the size of dimension 3

Line 7 Indicates the interpolation of dimension 3

Lines 8 through Line n are elements of dimension 3 matrices of (dimension 1
columns × dimension 2 rows). Lines that begin with a prefix of “--”, “;”, or “//”
are treated as comments.

Type: Indicates the type of data read in from the map file.

Interpolate: Allows dependent variables to be linearly interpolated for independent
variable values between data points. This feature can be used for static function
approximation with measured data or for device calibration, such as thermocouple-
voltage-to-temperature conversion.

Extrapolate: Allows dependent variables to be linearly extrapolated for values
beyond the bounds of the table using the last two data points in the table. This
feature can be used for static function approximation with measured data or for
device calibration, such as thermocouple-voltage-to-temperature conversion.

Examples

1. 1-D look-up table

Consider a hypothetical electrical motor that accepts DC input voltage in the range
of 0 to 40 V. Furthermore, assume that the current drawn by the motor is equivalent
to that of an ideal 3Ω resistor. The motor manufacturer has specified the following
current-torque curve for the motor:

Current (A) Torque (N-M)

0. 0.

.3 0.

.68 10.

����
���!#

�����
(� ������

#!7

Current (A) Torque (N-M)
1.15 11.8

2.16 12.77

2.86 13.04

3.7 12.86

4.36 12.66

5.74 11.84

6.73 11.18

10.5 8.62

11.5 8.62

Assuming that the voltage is applied at the rate of 1.2 t, where t is time in sec. This
system can be realized as shown below:

To generate the voltage, wire a ���� block, used to generate simulation time t, to a
��	� block set to 1.2. The output of the ��	� block passes through a �	�	� block
with its lower and upper limits set to 0 and 40, respectively. The output of the �	�	�
block is the voltage applied to the motor and is monitored in the upper plot.

����
���!#

�����
(� ������

#!!

To compute the current, divide the output of the �	�	� block is by a constant value
3. The current is monitored in the middle plot.

A ��� block points to the data file I2T.MAP, with two columns of data containing
the current-torque curve for the motor. (The sample data used in this example is
shown in the table above.)

The ��� block monitors the input value and compares it with the data in the first
column. For example, if the input value is 3, the ��� block recognizes that the input
is between the two points 2.86 and 3.7 in the input column. The ��� block performs
a linear interpolation between the corresponding values in the second column,
namely 13.04 and 12.86. Consequently, for an input of 3, the output of the ���
block is:

13.04 + (3 - 2.86) * ((12.86 - 13.04) / (3.7 - 2.86))

which is equal to 13.01.

2. 2-D look-up table

Using the same hypothetical motor described above, make the following
assumptions:

• The torque developed by the motor is a function of the current, as well as the
operating temperature of the motor.

• The current-temperature-torque has the following profile:

Torque (Temperature Dependent) (N-M)
Current (A) Torque at

30o C
Torque at

40o C
Torque at

50o C
Torque at

60o C
0. 0. 0. 0. 0.

0.3 0. 0. 0. 0.

0.68 10 9.5 9.10 8.7

1.15 11.8 11.21 10.74 10.27

2.16 12.77 12.13 11.62 11.19

2.86 13.04 12.39 11.87 11.35

3.7 12.86 12.22 11.70 11.18

4.36 12.66 12.03 11.52 11.01

5.74 11.84 11.25 10.77 10.30

6.73 11.18 10.62 10.17 9.73

10.5 8.62 8.19 7.84 7.50

11.5 8.62 8.19 7.84 7.50

����
���!#

�����
(� ������

#!#

• The motor temperature profile is given by Tm = (30 + t)0 C, where Tm is the
motor temperature and t is time in seconds.

• A data file named 2DI2T.MAP is formatted as shown below:

30. 40. 50. 60.

0. 0. 0. 0. 0.

0.3 0. 0. 0. 0.

0.68 10 9.5 9.10 8.7

1.15 11.8 11.21 10.74 10.27

2.16 12.77 12.13 11.62 11.19

2.86 13.04 12.39 11.87 11.35

3.7 12.86 12.22 11.70 11.18

4.36 12.66 12.03 11.52 11.01

5.74 11.84 11.25 10.77 10.30

6.73 11.18 10.62 10.17 9.73

10.5 8.62 8.19 7.84 7.50

11.5 8.62 8.19 7.84 7.50

The values of the temperature are entered in row 1, starting with column 2. The
values of current are entered in column 1, starting with row 2. The values of the
current and the temperature are shown in bold type for clarity.

Using a 2D ��� block, the system simulation can be realized as:

����
���!#

�����
(� ������

#!�

In addition to the blocks used in Example 1, a ���	���� t, defined as simulation
time, is connected to the output of the ���� block. A ��� block is used to access
2DI2T.MAP. Because this data file is a 2-D look-up table, the ��� block accepts two
inputs: temperature (the independent variable in the first row) and current (the
independent variable in the first column).

To generate the temperature profile, a �
��� block of 30 is added to ���	���� t,
fed through another ���	���� Tm, and monitored in the top ��
� block.

As before, the outputs of the ��� block, and the � block are monitored to observe
the profiles of the motor torque and current, respectively.

During simulation, when the temperature is ≥30o C and <40o C, the second column
of data is used to generate the torque profile. Similarly, for temperatures that are
≥40o C and <50o C or ≥50o C and <60o C, data in the third and fourth columns is
used respectively.

3. 3-D look-up table

The structure and usage of a VisSim diagram that includes a 3-D look-up table is
very similar to a 2-D look-up table. The major difference is in the specification of
the data file to be used by the 3-D ��� block. As an example, consider the following
data file:

45�6#�789�

�������6 ��	��63':'�3'5

��8��*';
7'����)�
	���

:

'''�73:'''�7�3'''�723'''�75:'''�7:3

��9����6
!69����)'����)�
	���

�3

'''<733'''=733'''>733''�3733''�2733''�<733''�=733''�>733''23733''22733

��9����6
!6�	
���	�'����)�
	���

5

'''3733'''2733'''<733

��

��'9����6
!6�	
���	�'/'''3733

'''37<?5'''37:55'''37::3'''37:2?'''37<?=

'''37<?2'''37:52'''37:<?'''37:2?'''37<?@

'''37<?�'''37:53'''37:<@'''37:2?'''37<?@

'''37<>>'''37:2>'''37:<:'''37:2?'''37<?@

'''37<>:'''37:2:'''37:<�'''37:2?'''37<?@

'''37<>�'''37:23'''37:5='''37:2?'''37<?@

����
���!#

�����
(� ������

#!(

'''37<@<'''37:�5'''37:2>'''37:53'''37<?>

'''37<=:'''37:3<'''37:�@'''37:53'''37<?>

'''37<:2'''37<>>'''37<>2'''37:53'''37<?>

'''37<53'''37<5?'''37<<<'''37:5�'''37<??

��

��'9����6
!6�	
���	�'/'''2733

37<?5'''37:55'''37::3'''37:2?'''37<?=

'''37<?2'''37:52'''37:<?'''37:2?'''37<?@

'''37<?3'''37:53'''37:<@'''37:2?'''37<?@

'''37<>>'''37:2>'''37:<<'''37:2?'''37<?@

'''37<>:'''37:2:'''37:<�'''37:2?'''37<?@

'''37<>3'''37:23'''37:5:'''37:2?'''37<?@

'''37<@<'''37:�5'''37:2>'''37:53'''37<?>

'''37<=:'''37:35'''37:�='''37:53'''37<?>

'''37<:�'''37<>@'''37<>3'''37:53'''37<?>

'''37<2?'''37<5@'''37<<2'''37:5�'''37<??

��

��'9����6
!6�	
���	�'/'''<733

37<?5'''37:52'''37:<?'''37:2?'''37<?=

'''37<?�'''37:5�'''37:<>'''37:2?'''37<?@

'''37<?3'''37:53'''37:<='''37:2?'''37<?@

'''37<>@'''37:2@'''37:<5'''37:2?'''37<?@

'''37<><'''37:2<'''37:<3'''37:2?'''37<?@

'''37<@?'''37:�?'''37:5<'''37:2?'''37<?@

'''37<@5'''37:�2'''37:2@'''37:53'''37<?>

'''37<=5'''37:32'''37:�<'''37:53'''37<?>

'''37<<?'''37<>:'''37<@='''37:53'''37<?>

'''37<2='''37<55'''37<5@'''37:5�'''37<??

��

This data corresponds to one of the aerodynamic coefficients of a projectile in
motion, traveling at speeds ranging from 1 to 1.5 mach. The value of the coefficient
varies with three parameters: mach number, angle of attack, and angle of sideslip.
Assuming sinusoidal variations in all three parameters, a diagram that uses this data
file can be realized as shown on the next page.

����
���!#

�����
(� ������

#!%

Three �	� blocks produce sinusoidal variations of amplitudes 0.5, 22, and 4 for the
three ���	����� mach_number, angle_of_attack, and angle_of_slideslip. Three
��� blocks ensure that the values attained by the ���	����� are strictly positive. A
constant value of 1 is used to obtain a variation in the range (1, 1.5) for
mach_number.

The outputs of the three ���	���� blocks are fed into a ��� block that points to the
map file 3D_EX.MAP, whose contents are shown above. The resulting value of the
C-axial aerodynamic coefficient are shown in the ��
� block.

��

y
x x x

x x x
=

>
<





1 1 2

2 1 2

if

if

Block Category: Nonlinear

The ��� block compares scalar inputs for a higher value and generates an output
signal with the higher value.

Examples

1. Comparison of two values

Consider the equation:

 z = max(x,y)

If x is a sinusoid that varies between -1 and +1, and y is a uniform random variable
that varies between -1 and +1, this equation can be realized as shown on the next
page.

����
���!#

�����
(� ������

#!+

2. Computation of the maximum value of a given time-varying signal

Consider the equation:

 z = max(y)

where y is a uniform random variable that varies between -1 and +1. To find the
maximum value that z attains, create the following diagram:

A ��	�����" block stores the previous value of y. The ��� block compares the
current and previous values of y. The larger of the current and previous values is fed
back into the ��	�����" block for the next round of comparisons. This way, the
output of the ��� block is always the largest encountered value of y. The working
details of this procedure are best examined by single-stepping through the
simulation.

����
���!#

�����
(� ������

#!.

�����

y
x x

x
=

≥





2 1

1

if 1

x if < 13

Block Category: Nonlinear

The ����� block examines x1 (Boolean signal) to determine the output signal. The
letters b, t, and f on the input connector tabs stand for Boolean, True, and False. The
����� block accepts scalar, vector, and matrix input.

The ����� block is particularly well-suited for performing if-then-else decisions.

Examples

1. Simple merge

Consider the equation:

If y = 2, then z = 5, else z = 2.5

This equation can be realized as:

2. Cascade merge

Consider the equation:

If x = 1 and y = 2, then q = z, else q = 0

where (if y = 2, then z = 5, else z = 2.5). This logical relation can be realized as
shown on the next page.

����
���!#

�����
(� ������

#!1

��
��
display = x1

Block Category: Signal Consumer

The ����� block displays signals in either a gauge- or bar-style display. Initially, the
����� block appears as a gauge-style display with one input connector tab. For
more information, see page 75.

���

y
x x x

x x x
=

<
>





1 1 2

2 1 2

if

if

Block Category: Nonlinear

The �	� block compares two scalar inputs for a lower value and generates an output
signal with the lower value.

����
���!#

�����
(� ������

#!-

Examples

1. Comparison of two values

Consider the equation:

 z = min(x,y)

If x is a sinusoid that varies between -1 and +1, and y is a uniform random variable
that varies between -1 and +1, this equation be realized as:

2. Computation of the minimum value of a given time-varying signal

Consider the equation:

z = min(y)

where y is a uniform random variable that varies between -1 and +1. To find the
minimum value that z attains, create the following diagram:

����
���!#

�����
(� ������

##7

A ��	�����" block stores the previous value of y. The �	� block compares the
current and previous values of y. The smaller of the current and previous values is
fed back into the ��	�����" block for the next round of comparisons. This way, the
output of the �	� block is always the smallest encountered value of y. The working
details of this procedure are best examined by single-stepping through the
simulation.

���
����

Block Category: Matrix Operation

The ����	��" block performs a matrix multiplication. The ����	��" block
accepts two vector inputs and produces one vector output.

Multiplying scalars and vectors

To multiply two or more scalars, use the � block, as described on page 142.

To perform a single value summation of an element-by-element multiply of
two vectors, use the

���

��� block, as described on page 181.

Examples

1. Simple matrix multiply

Here

A B=








 =











1 2

3 4

5 6

7 8
,

����
���!#

�����
(� ������

##!

Then

AB =
+ +
+ +









 =











1 5 2 7 1 6 2 8

3 5 4 7 3 6 4 8

19 22

43 50

() () () ()

() () () ()

������H�

The ������;�� block excels at nonlinear system identification, problem diagnosis,
decision-making, prediction, and other problems where pattern recognition is
important and precise computational answers are not readily available. Typical uses
of the ������;�� block include the identification of a chemical plant and the
training of a moving cart to balance a vertical pole.

To use the ������;�� block, you must install the VisSim/Neural-Net software on
your computer. For more information on the ������;�� block, see the
VisSim/Neural-Net User’s Guide.

�	

y
x

=
=




1 if

otherwise
1 0

0

Block Category: Boolean

The �
� block produces the Boolean NOT of the input signal. The output is true
when the input is false; and the output is false when the input is true.

If you click the right mouse button over the �
� block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Using a not block

Consider a variable c such that:

c b=

����
���!#

�����
(� ������

###

or in other words, c = not(b). Furthermore, assume that b is true if t > 2.2; else b is
false, where t is the simulation time. This system can be realized as shown below.

From the outputs obtained in the two ��
� blocks, b, given by the output of the 0
block is true only when t is > 2.2. This requires that c, which is defined to be �
�(b),
be true only the range t < 2.2, as obtained in the bottom ��
� block.

	�
y x x= 1 2bitwise OR

Block Category: Boolean

The
� block produces the bitwise OR of two to 256 scalar input signals. The output
of the
� block is true when at least one of the inputs is true. When all the inputs are
false, the output is false.

If you click the right mouse button over the
� block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Computation of three inputs

Consider a variable y such that:

If a ≥ 8 or b = 6 or c ≤ 3, then y = cos(t); else y = 0

where t is simulation time. Furthermore, let t be the input to all three parameters a, b,
and c. This system can be realized as shown on the next page.

����
���!#

�����
(� ������

##�

During simulation, the
� block evaluates to false in the interval t = (3,8), except for
the instant t = 6. In this case, the ���	���� y takes on the value of 0. The output of

� evaluates to true in the remaining parts of the simulation, and as a result, y takes
on the value of cos(t) in these periods, including the instant t = 6.

����3	��

y t tdelay= ⋅ −slope ()2

Block Category: Signal Producer

The �����
�� block creates a parabolic signal.

Time Delay: Indicates an offset that is used in the calculation of a signal. For a
constant-valued delay, wire the block into a ��	�����" or �	������" block with
an initial condition of the desired constant value.

Specify the offset in seconds. The default value is 0.

Slope Rate: �Scales the curvature of the parabola. The default value is 1.

����
���!#

�����
(� ������

##(

������
������	,�

Block Category: Optimization

The ���������-�)�
�� block works with the �
�� block to find globally optimal
values that minimize a scalar cost function. For more information, see Chapter 8,
“Performing Global Optimization.”

��	

plot = x x1 4...

Block Category: Signal Consumer

The ��
� block displays simulation data graphically in a customizable plots. For
more information, see page 59.

�	,

y

x

or

x x

=









exponent

1
2

Block Category: Arithmetic

The �
� block creates an output signal based on the value of the input signal raised
to the power of a specified exponent. Inputs can be scalars, vectors, or matrices.
When the input is a vector or matrix, the �
� block computes the output on an
element-by-element basis.

����
���!#

�����
(� ������

##%

The �
� block is useful for solving equations of the type y = xz. Do not use the �
�
block to compute matrix dot products, such as Y = A2, where the dot product is
implied. Instead use the

���

��� block, as described on page 181.

By adding an input connector tab to the �
� block, you can specify an external
exponent parameter to override the block’s exponent parameter. For example:

This diagram raises two to the eighth power. The
	����" block verifies the results.
The main advantage of setting the exponent externally is that the value of the
exponent can be varied dynamically as the simulation progresses.

Exponent: Specifies the power to which the input signal is raised. The default is 2.

Examples

1. Raising a matrix input to a power

Consider the equation:

 Y = XZ

where X =










1 2

4 8
 and z = 3. This equation can be realized as:

The �
� block raises each element of the incoming matrix to power 3.

����
���!#

�����
(� ������

##+

)9"�

Block Category: Random Generator

The �AB� block produces a pseudo-random sequence of unit amplitude pulses. You
can control the frequency of oscillation and the register length.

The �AB� block can be used to see how random perturbations affect a system.
System Identification software can use the output of a PRBS block to create a
mathematical model of the system.

Register Length: Controls when the sequence of pulses repeats. The default is 6

Amplitude: Specifies the maximum strength of the output signal. The default is 1.

Sample Interval: Indicates the frequency of oscillation. The default is 0.05.

����������

y
t

=
==




1 0

0

if

otherwise

time pulsemod

Block Category: Signal Producer

The ��������	� block produces a sequence of unit amplitude pulses separated by
zeros. You cannot control the duration of the pulse; you can only control the time
between pulses.

You can add two input connector tabs to the ��������	� block. The top input
connector tab lets you specify an external time delay; the bottom one lets you specify
an external time between pulses. These additional inputs override the existing
parameters. If you add only one input connector tab, it corresponds to the external
delay.

����
���!#

�����
(� ������

##.

Time Delay (sec): Specifies, in seconds, how long to delay before calculating the
value of the output signal. The default is 0.

Time Between Pulses: Specifies the time between pulses. This is useful for
clocking delays and sample holds. The default is 0.01.

0���
�5�

y
x= 











integer part
resolution

resolution

Block Category: Nonlinear

The C����	,� block is useful for simulating approximations of a continuously
varying signal that possibly requires the use of an infinite number of values or levels
by a discontinuous signal with a finite number of values.

The C����	,� block rounds the precision of input signal based on the signs of the
input and the resolution. When the resolution is positive, the signal is rounded down
to -∞. For example, 1.9 quantized to a resolution of 1 becomes 1, and -1.9 quantized
to a resolution of 1 becomes 2. When the resolution is negative, the signal is rounded
to +∞. For example, 1.1 quantized to a resolution of -1 becomes 2, and -1.1
quantized to a resolution of -1 becomes -1.

The C����	,� block is applicable to simulations that involve the conversion of
analog signals to digital signals.

Resolution: Specifies the value to which the input signal is rounded or truncated.
The default is 0.05.

����
���!#

�����
(� ������

##1

Examples

1. Quantization of a sinusoid: positive resolution

Consider a variable y such that:

y t= sin()

quantized with a resolution of +0.5. This equation an be realized as:

The C����	,� block approximates the sinusoid input using four values (0, +0.5,
-0.5, and -1).

2. Quantization of a sinusoid: negative resolution

Consider a variable y such that:

y t= sin()

quantized with a resolution of -0.5. This equation can be realized as:

The C����	,� block approximates the sinusoid input using four values (0, +0.5, +1,
and -0.5). By comparing these results with those in Example 1, the effects of using
positive and negative resolutions in a C����	,� block becomes clear.

����
���!#

�����
(� ������

##-

����
y t tdelay= ⋅ −slope ()

Block Category: Signal Producer

The ���� block creates a unit ramp signal based on simulation time.

Time Delay(sec): Indicates an offset that is used in the calculation of a signal. For a
constant-valued delay, wire the ���� block into a ��	�����" or �	������" block
with an initial condition of the desired constant value.

Specify the offset in seconds. The default is 0.

Slope: Specifies the ramp slope. The default is 1.

��������
y t=

Block Category: Signal Producer

The �����	�� block provides the current time in milliseconds since the start of your
VisSim session. Note that this is not simulation time.

����
���!#

�����
(� ������

#�7

�����

y

x

x=

− <

>















1
2

1
2

0

if
-deadband

if
deadband

otherwise

Block Category: Nonlinear

The ����" block simulates a tri-state relay operator. This block is useful for
simulation switches or switching operators.

Dead Band: Indicates the width of the zone of lost motion about the input signal’s
0 value, thereby creating a tri-state relay operator (-1, 0, 1). When input is less than
half the negative Dead Band value, the ����" block outputs -1. When input is
greater than half the positive Dead Band value, the ����" block outputs +1. When
input lies within the range (-Dead Band/2, +Dead Band/2), the ����" block outputs
0. You cannot specify a negative value for this parameter. The default is 0.

Examples

1. Constructing a tri-state switch

Consider a tri-state variable y such that:

y

if x t

if x t

otherwise

=
+ >

− < −






1 05

1 05

0

() .

() .

Assuming that x(t) = sin(t), this equation can be realized as shown on the next page.

����
���!#

�����
(� ������

#�!

The Dead Band of the ����" block is set to 1.0. During simulation, the ����" block
changes its output state based on whether the input signal is greater than or less than
Dead Band/2.

����

�
����
	��?!C�@

y
x dt x

x

t

t

=
if

if x

start

end

2

1 2

3

1

1

∫ <

≥










Block Category: Integration

The �����$�������
� block integrates the input signal with an optional reset
capability. When the Boolean input (b) is 0, the �����$�������
� behaves like a
normal integrator. When the Boolean input goes to 1, the �����$�������
� takes
the value of the reset input (r) for as long as the Boolean value stays high.

The �����$�������
� block integrates the input signal using the integration
algorithm established in the dialog box for the Simulate > Simulation Properties
command. The available algorithms are Euler, trapezoidal, Runge Kutta 2d and 4th
orders, adaptive Runge Kutta 5th order, adaptive Bulirsh-Stoer, and backward Euler
(Stiff).

The inputs to the �����$�������
� block are x1, x2 (b), and x3 (r).

����
���!#

�����
(� ������

#�#

Initial Condition: Indicates the initial value of the integrator upon simulation start-
up. This parameter can be overridden if x2 is non-zero on the first step of the
simulation. The default is 0.

ID: Represents an identification number for the block. This number keeps track of
the state number that VisSim assigns to the integrator. The number of states in any
VisSim diagram equals the number of integrators. The default is 0.

Checkpoint State: Contains the value of the integrator state at the checkpoint. If
you have not checkpointed your simulation via the Simulate > Simulation Setup
command, the default is 0.

Examples

1. Instantaneous momentary reset

Consider a system whose dynamics are given by the differential equation:

� sinx x=

When a particular variable z equals 1, x must be reset to -x. To make matters simple,
assume that z becomes momentarily equal to 1, every three seconds, and that
x(0) = 5.

Equations of this type are frequently used in kinematic systems that undergo
collisions, electrical circuits that involve switching phenomena, chemical processes,
and fluid dynamics.

This system can be realized as shown below.

����
���!#

�����
(� ������

#��

As with any differential equation, the right-hand side of the equation is realized first
by creating a ���	���� x, and then connecting it successively to an ��� block, a
�	� block, and another ���	���� xdot.

At this point, only xdot is defined in terms of x. To define the relationship between
xdot and x, xdot is fed into the top input tab of the �����$�������
� block, which
is fed into the ���	���� x.

The Boolean input tab of the �����$�������
� is fed by ���	���� z, which
generates pulses that are three seconds apart. The negative value of a given signal
can be directly generated using the �� block, and then fed into the reset input tab of
the �����$�������
�.

From the results of simulation shown in the two ��
� blocks, z becomes high every
three seconds, and at each of these instances, the output of the �����$�������
� is
reset to -x.

2. State reset for a duration

As mentioned above, the �����$�������
� output is held at the reset value as long
as the Boolean input is high. To illustrate this property, consider the differential
equation:

� sinx x=

When a particular variable z is equal to 1, x must be held at its current value. Assume
that z = 1 when 1 ≤ t ≤ 6 and that x(0) = 5. This case can be realized as shown below.

����
���!#

�����
(� ������

#�(

To construct z, two ���� blocks and a ����	�������	
� block are used. The
delay and amplitude of the top ���� block are both set to 1; for the bottom ����
block, they are set to 6 and 1, respectively. By subtracting the outputs of the two
���� blocks and defining the output of the ����	�������	
� block as z, z = 1
when 1 ≤ t ≤ 6.

By coding z in this manner, z is redefined as z(t) = u(t - 1) - u(t - 6) where u(t)
represents a unit step. Consequently, u(t - 1) is a unit step delayed by 1 sec, and
u(t - 6) is a unit step delayed by 6 sec.

During simulation, the output of the �����$�������
� holds constant at x(1) for
the duration 1 ≤ t ≤ 6.

�
�*�
�
�

Block Category: Real Time

The rt-����$� block, in conjunction with the File > Real Time Config command,
lets you connect to an I/O real-time data card. To use this block and menu command,
you must install the VisSim/Real-TimePRO or VisSim DACQ software on your
computer. For information, see the VisSim/Real-TimePRO User’s Guide.

�
�*�
�4�

Block Category: Real Time

The �������%�� block, in conjunction with the File > Real Time Config command,
lets you to connect to an I/O real-time data card. To use this block and menu
command, you must install the VisSim/Real-TimePRO or VisSim DACQ software
on your computer. For information, see the VisSim/Real-TimePRO User’s Guide.

����
���!#

�����
(� ������

#�%

������<	��





 ≥

=
otherwise

1xif

previous

12

y

x
y

Block Category: Nonlinear

The ������(
�
 block latches an input value under the control of a clock signal,
x1, which is represented as Boolean input (b). When b is true, input signal x2 , which
is represented as input (x) is sampled and held until b is true again. Boolean inputs
can be regularly or irregularly spaced.

Initial Condition: Indicates the initial condition for the ������(
�
. The default
is 0.

Examples

1. Sample and hold with regularly-spaced clock

Consider the equation:

y(n) = x(t)

sampled every 0.5 sec. Furthermore, let x(t) be a ramp signal. This system can be
realized as shown on the next page.

����
���!#

�����
(� ������

#�+

As seen in the ��
� block, the first clock pulse occurs at 0.5 sec. Until this time, the
output of the ������(
�
 block is zero. At 0.5 sec, the input signal is sampled and
the value is used as output for the ������(
�
 block. The output of the
������(
�
 block is held at this value until the occurrence of the next clock pulse
at 1.0 sec. At this time, the input signal is again sampled and the new value is
presented to the output of the ������(
�
 block, and the process repeats itself.

2. Sample and hold with irregularly-spaced clock

Consider the equation:

y(n) = x(t)

sampled randomly. Furthermore, let x(t) be a sinusoid signal with a frequency of 2.5
rad/sec. This system can be realized as shown below.

A �	���
	
 block with a frequency of 2.5 rad/sec generates the sinusoid signal and
a �����	�� block produces a randomly varying signal. The randomly varying

����
���!#

�����
(� ������

#�.

signal is converted to a random clock by taking the absolute value of the random
signal and then using only the integer portion of it. The output of the 	�� block is
passed through a �	�	� block to restrict the signal to the range (0, 1). The output of
the �	�	� block is connected to the top input of the ������(
�
 block. The output
of the ������(
�
 block is connected to the ���	���� y(n),which is connected to
a ��
� block. The actual input, x(t) is monitored separately in another ��
� block.

By comparing the outputs in the two ��
� blocks, the output of the ������(
�

block is a randomly sampled and held version of the input sinusoid.

�������	���
Block Category: Annotation

The �������
��� block reduces wiring clutter by letting you combine input signals
into a single vector wire. This is usually a prerequisite for performing vector and
matrix algebra. Use the ����
������ block to unbundle vector wires.

Examples

1. Creation of a vector

Consider the equation:

 Z = 3.3 Y

where Z and Y are vectors. Further, assume that Y = [1 2 3]T.

This equation can be realized as:

The
	����" block displays all the elements of the incoming vector line. The results
indicate that the vector operation is performed correctly.

2. Creation of a matrix

Consider the equation B = A-1, where

����
���!#

�����
(� ������

#�1

A =
−















1 2 3

4 5 6

7 8 9

The above equation can be realized as:

The
	����" block displays all the elements of the incoming matrix line. The
results indicate that the matrix operation is performed correctly.

����

y

x

x

x

=
>
=

− <







1 0

0 0

1 0

if

if

if

Block Category:
Arithmetic

The �	�� block determines the sign of the scalar input signal. The �	�� block
outputs +1 when the input is greater than zero; -1 when the input is less than zero;
and 0 when the input is zero.

Examples

1. Computation of the sign of sin(t)

This equation can be realized as:

����
���!#

�����
(� ������

#�-

The results obtained indicate that when the input is greater than zero, the �	�� block
outputs +1, when the input is less than zero the output is -1, and when the input is
zero, the output is 0.

���
y x= sin

Block Category: Transcendental

The �	� block produces the sine function of the input signal. The input signal is
represented in radians.

Examples

1. Computation of sin(2θ) = (cos(θ) + sin(θ))2 - 1

With θ chosen to be π/4, the above trigonometric identity can be realized as:

����
���!#

�����
(� ������

#(7

����

y
x x

=
− −e e

2

Block Category: Transcendental

The �	�* block produces the hyperbolic sine function of the input signal. The input
signal is represented in radians.

Examples

1. Computation of sinh(2θ) = 2 sinh(θ) cosh(θ)

With θ chosen to be π/2, the above trigonometric identity can be realized as:

�����	��

()y t tdelay= ⋅ ⋅ −A sin ω ()

Block Category: Signal Producer

The �	���
	
 block creates a unit sine wave signal.

Time Delay (sec): Indicates an offset that is used in the calculation of a signal. For
a constant-valued delay, wire the �	���
	
 block into a ��	�����" or �	������"
block with an initial condition of the desired constant value. Specify the offset in
seconds. The default is 0.

����
���!#

�����
(� ������

#(!

Frequency (rad/sec): Controls the frequency of oscillation of the output signal.
Specify the frequency in radians per second. For example, if you specify a frequency
of 1, one oscillation completes in 2π seconds. If you specify a frequency of π, one
oscillation completes in 0.5 seconds. The default is 1.

Amplitude: Specifies the maximum strength of the output signal. The default is 1.

������

Block Category: Signal Producer

The ��	
�� block allows mouse input to dynamically modify a signal value during
a simulation, between a lower and upper bound in 1% and 10% increments. The
��	
�� block displays the current value applied to the signal. Use the scroll bar to
adjust the signal value.

Slider precision is affected by the High Precision Display parameter under
Preferences in the dialog box for the Edit > Preferences command. When activated,
slider precision is shown at up to 15 significant digits; when de-activated, slider
precision is shown at up to 6 significant digits.

Current Value: Specifies the initial value of the slider output signal. The default
is 0.

Upper Bound: Specifies the largest value the slider output signal can attain. The
default is 100.

Lower Bound: Specifies the smallest value the slider output signal can attain. The
default is -100.

����
���!#

�����
(� ������

#(#

�0�

y x=

Block Category: Transcendental

The �C�� block produces an output signal that is the square root of a positive input
signal. The �C�� block does not accept negative inputs. And, there is no square root
of 0.

Examples

1. Computation of the sqrt(a2 + b2 - 2ab) = (a - b)

With a and b chosen to be 7 and 4 respectively, the above equation can be realized
as:

�
�
������
Block Category:
Linear system

The ���������� block is used to represent a multi-input multi-output linear system
in state-space form. The state-space matrices can be specified in the following ways:

• As an .M file created with VisSim: The Analyze > Linearize command
generates ABCD state-space matrices from a nonlinear system by numerically
evaluating the matrix perturbation equations at the time the simulation was
halted. For more information, see the VisSim/Analyze User’s Guide.

• As an .M file created with a text editor: When you create a .M file with a text
editor, follow these rules: start each matrix on a new line; enclose matrix
elements in square brackets and terminate with a semi-colon; separate matrix
elements with spaces; separate matrix rows with semi-colons.

����
���!#

�����
(� ������

#(�

The following is an example of a user-written .M file:

function [a,b,c,d] =vabcd
a = [-.396175 -1.17336 ; 5.39707 .145023];
b = [-.331182 ; -1.08363];
c = [0 1];
d = [0];

Note that MatLab commands other than array initialization are not allowed.

• As a .MAT file created with MatLab: Generating .MAT files is described in
the MatLab documentation. Note that when you save the ABCD matrices to a
file, the names of the matrices are not important; however, the order in which
they appear is.

When you simulate the block diagram, VisSim numerically solves the ����������
block.

VisSim supports state-space systems up to the 90th order.

Specification Method: You have the choice of three specification methods:

• Discrete: Indicates a discrete Z-domain system. Enter the time step for the
discrete transfer function in the dT box. By default, this parameter is de-
activated, which indicates a continuous transfer function.

• .mat File: Indicates that the system is to be specified as a MatLab .MAT file.
Specify the name of the .MAT file in the .mat/.m File group box.

• .m File: Indicates that the system is to be specified as an .M file. Specify the
name of the .M file in the .mat/.m File group box.

dT: Specifies the time step for the discrete system. By default, VisSim uses step
size parameter from the Simulate menu’s Simulation Setup command.

Initial State: Specifies initial values for the states in the block. The values are right-
adjusted. The right-most value corresponds to the lowest order state. Unspecified
states are set to 0.

����
���!#

�����
(� ������

#((

File Name: Indicates the name of the .M or .MAT file to be used as input to the
���������� block. You can type the file name directly into this box or select one
using the Select File button. To open the specified file with the default text editor,
click on the Browse Data button.

Input Count, Output Count, and State Count: Indicate the number of inputs to
the block, the number of outputs from the block, and the number of system states.
The number of system states is determined by the size of the A matrix. These options
are read-only.

�
��

y
t t

=
<




0 if

A otherwise

delay

Block Category: Signal Producer

The ���� block creates a unit step signal.

Time Delay(sec): Specifies, in seconds, how long to delay before calculating the
value of the output signal. The default is 0.

Amplitude: Indicates the maximum strength of the output signal. The default is 1.

�
	�

If
halt simulation unconditionally

halt current run; start next run

Else normal

x
>
>





2

1

Block Category: Signal Consumer

The ��
� block conditionally halts a simulation when the input signal is non-zero.
For a multi-run simulation, when the input value is 1, VisSim halts the current run,
increments $runCount, and starts the next run if the Auto Restart parameter in the

����
���!#

�����
(� ������

#(%

dialog box for the Simulate > Simulation Properties command has been activated.
When the input value is 2, VisSim stops the multi-run sequence altogether.

�
�������

strip chart = x x1 4...

Block Category: Signal Consumers

The ���	� *��� block displays up to four signals in a customizable scrolling
window. For more information, see page 67.

�������I���
�	�
y x x xn= + +1 2 ...

Block Category: Arithmetic

The ����	�������	
� block produces the sum of two signed input signals. You
can toggle the sign of the input signals (switch from positive to negative and vice
versa) by holding down the CTRL key and clicking the right mouse button over the
connector tab.

Inputs can be scalars, vectors, and matrices. When vector and matrix inputs are of
unequal lengths, the ����	�������	
� block defines the output vector or matrix to
be the maximum composite size of all the incoming vectors or matrices and extends
all other incoming vectors and matrices to match the length of the longest incoming
vector or matrix, by padding each of them with the requisite number of zeros.

����
���!#

�����
(� ������

#(+

Examples

1. Addition of two scalar quantities

Consider the equation y(t) = t + sin(t). This can be realized as:

2. Subtraction of two vectors

Consider a vector x = [1 1.2 -2.3], and another vector y = [1 1 1]. The vector
difference z = x - y can be computed directly by using a ����	�������	
� block
as:

The vector display shows that the result of the simulation is a direct element-by-
element subtraction of vector y from vector x.

3. Matrix addition and subtraction

Consider the matrix equation:

Z = A + B - C

where:

A B C=
















=
−
−

− −

















= −
−

















1 3 5

2 4 6

7 9 0

1 2 1

3 4 3

5 6 5

1 1 6

5 1 9

2 15 6

; ;

This equation can be realized as shown on the next page.

����
���!#

�����
(� ������

#(.

The matrix display shows that e result of the simulation is a direct element-by-
element matrix operation of A + B - C.

��
y x= tan

Block Category: Transcendental

The ��� block produces the tangent of the input signal. The input signal must be
represented in radians.

����
���!#

�����
(� ������

#(1

Examples

1. Computation of tan(2θ) = 2 tan(θ) / (1 - tan2(θ))

With θ chosen to be π/3, the above trigonometric identity can be realized as:

���

y
x x

x x
=

−
+

−

−

e e

e e

Block Category: Transcendental

The ���* block produces the hyperbolic tangent of the input signal. The input signal
must be represented in radians.

Examples

1. Computation of tanh(2θ) = 2 tanh(θ) / (1 + tanh2(θ))

With θ chosen to be π/4, the above trigonometric identity can be realized as:

����
���!#

�����
(� ������

#(-

���*����
y x t Td= −()

Block Category: Time Delay

The �	������" block delays the input signal for an absolute time. The input
connector tabs are marked t (for the time delay) and x (for the main signal). This
block is intended to model a continuous delay in a continuous simulation. Use the
��	�����" block to model a digital delay.

Initial Condition: Sets an initial condition for the delay. The default is 0.

Max Buffer Size: Controls the granularity of the resulting timeDelay signal. If the
signal is too granular, increase the value. The default is 128.

The �	������" block requires a buffer element for each time step in the requested
delay amount. The buffer size should be set to the maximum delay time you need
divided by the simulation time step.

Examples

1. Introduction of a constant delay

For a given signal, a constant delay can be introduced as:

����
���!#

�����
(� ������

#%7

Here, a ���� block is used to produce a test signal and a �
��� block is used to
produce a time delay of 0.2. For this example, the simulation step size is set to 0.01.

The amount of delay connected to the t input tab must be an integral multiple of the
simulation step size. If you had entered 0.027 as the amount of delay and re-run the
simulation, VisSim would have issued an error message. This error occurs because
VisSim starts the simulation at t = 0, and steps through at intervals of 0.01. The time
intervals that are hit are 0, 0.01, 0.02, 0.03, and so on. The time delay 0.027 is not
honored.

If you choose to ignore the error (by clicking on the Retry or Ignore buttons in the
message box), VisSim rounds off the delay to the next nearest time step, which in
this case happens to be 0.03, as shown below:

2. Introduction of an integral-multiple delay

One way to achieve multi-step delays is by using the �	������", &�	������, and
��	� blocks, as shown below:

During simulation, the value sent to the t input of the �	������" block is 3 *
&�	������, and as a result, the output of the'�	������" block is three steps
behind the input signal.

����
���!#

�����
(� ������

#%!

3. Introduction of a time-varying delay

The real power of the �	������" block becomes apparent when you implement
time delays that are themselves time-varying. As an example, consider the following
equation:

y = sin(t - |sin(t)|)

Here, the intent is to delay (or shift right) a sinusoid of frequency ω = 1 rad/sec, by a
time-varying amount given by the absolute value |sin(t)|. This can be realized as:

An ��� block computes the absolute value of sin(t), generated by a �	� block. The
output of the ��� block is fed to the t input of the �	������" block. Another �	�
block generates the actual signal to be delayed. The top ��
� block shows the time-
varying delay being implemented. The bottom ��
� block shows the actual and
delayed signals.

����
���!#

�����
(� ������

#%#

����2��6���
�	�

y
a s a s a s a

b s b s b s b
xn

n
n

n

n
n

n
n=

+ +
+ +

−
−

−
−

1
1

1 0

1
1

1 0

...

...

Block Category:
Linear System

The �����!�������	
� block executes a single-input single-output linear transfer
function specified in the following ways:

• As an .M file created with VisSim: The Linearize command in the Analyze
menu generates ABCD state-space matrices from the nonlinear system by
numerically evaluating the matrix perturbation equations at the time the
simulation was halted. For more information, see the VisSim/Analyze User’s
Guide.

• As an .M file created with a text editor: The following is an example of a
user-written .M file:

function [a,b,c,d] =vabcd
a = [-.396175 -1.17336 ; 5.39707 .145023];
b = [-.331182 ; -1.08363];
c = [0 1];
d = [0];

• As a .MAT file created with MATLAB: Generating .MAT files is described in
the MatLab documentation. Note that when you save the ABCD matrices to file,
the names of the matrices are not important; however, the order in which they
appear is.

When you simulate the block diagram, VisSim numerically solves the
�����!�������	
� block.

Digital filter design: The �����!�������	
� block supports IIR and FIR digital
filter design. For more information, see Chapter 9, “Designing Digital Filters.”

Setting up a transfer function: The �����!�������	
� block’s Properties dialog
box allows you to control how the numerator and denominator polynomials are
entered.

����
���!#

�����
(� ������

#%�

Specification Method: You have three choices of specification method:

• Polynomial Coefficient: Indicates that the transfer function is to be specified
as numerator and denominator polynomials. Supply the numerator and
denominator polynomials and gain under the Polynomial Coefficients group
box.

• .mat File: Indicates that the transfer function is to be specified as a .MAT file.
Specify the name of the .MAT file in the .mat/.m File group box.

• .m File: Indicates that the transfer function is to be specified as an .M file.
Specify the name of the .M file in the .mat/.m File group box.

Discrete: Indicates a discrete Z-Domain transfer function. Enter the time step for
the discrete transfer function in the dT box. By default, VisSim uses the step size
established with the Simulate > Simulation Properties command.

When Discrete is de-activated, a continuous transfer function is created.

Tapped Delay: Provides tapped delay implementation for high order FIR filters.
For more information, see Chapter 9, “Designing Digital Filters.”

dT: Specifies the time step for the discrete transfer function. By default, VisSim
uses step size parameter from the Simulate > Simulation Properties command.

Display Filter Method: Displays the filter specification on the block. When
Display Filter Method is not activated, VisSim displays the polynomial coefficients.

IIR Filter: Opens the IIR Filters Setup dialog box to design a suitable filter using
analog prototypes. For more information, see Chapter 9, “Designing Digital Filters.”

FIR Filter: Opens the FIR Filter Setup dialog box to construct Regular Finite
Impulse Response filters, differentiators, and Hilbert Transformers. For more
information, see Chapter 9, “Designing Digital Filters.”

����
���!#

�����
(� ������

#%(

Convert S ->Z: Uses bilinear transformation to convert a continuous transfer
function to an equivalent discrete transfer function with a sampling interval of dT.
VisSim requests a discrete sampling rate prior to performing the conversion.

An example of the conversion is shown below.

H s
a

s a
() =

+

The bilinear transformation can be implemented by the substitution:

2 1

1dT

z

z
s

−
+

→

The above transfer function becomes:

H z
a

T

z

z
a

dT () =






−
+









+2 1
1

VisSim automatically simplifies this representation and enters the appropriate
coefficients for the numerator and denominator polynomials.

Convert Z ->S: Uses bilinear transformation to convert a discrete transfer function
to an equivalent continuous transfer function. For example, consider:

H z
z

z bdT () =
+

The bilinear transformation can be implemented by the substitution:

2

2

+
−

→dT s

dT s
z

.

.

The above discrete transfer function becomes:

H s
dT s

b dT b dT sdT ()
.

() (.)
=

+
+ + −

2

2 2

VisSim automatically simplifies this representation and enters the appropriate
coefficients for the numerator and denominator polynomials.

It is important to note that in both transformations, the results obtained are
dependent on the sampling interval dT. In other words, for a given continuous or
discrete transfer function, an infinite number of equivalent discrete or continuous
transfer functions may be obtained by varying the sampling interval dT.

File: Indicates the name of the .M or .MAT file to be used as input to the
�����!�������	
� block. You can type the file name directly into this box or
select one using the Select File button.

����
���!#

�����
(� ������

#%%

Initial Value: Specifies initial values for the states in the block. The values are
right-adjusted. The right-most value corresponds to the lowest order state.
Unspecified states are set to 0.

Gain: Indicates the transfer function gain. If the leading terms of the numerator and
denominator coefficients are not unity, VisSim will adjust the gain to make it so. The
default value is 1.

Denominator: Indicates the denominator polynomial for the �����!�������	
�
block. VisSim determines the order of the transfer function by the number of
denominator coefficients you enter. For example, an nth order transfer function will
have n + 1 coefficients. Separate coefficients with spaces.

Numerator: Indicates the numerator polynomial for the �����!�������	
�
block. Separate coefficients with spaces.

�����	��

[] []a aij

T

ji=

Block Category: Matrix Operation

The ������
�� block interchanges each row with the column of the same index

number. Thus, if []A = aij , then the transpose of A is: []AT
jia=

The ������
�� block accepts one vector input and produces one vector output.

Examples

����
���!#

�����
(� ������

#%+

���2	��
Block Category: Random Generator

The ��	!
�� block creates a uniformly distributed random noise signal with values
between zero and one. The random seed is set under Preferences in the dialog box
for the Simulate > Simulation Properties command.

Time Delay(sec): Indicates, in seconds, how long to delay before calculating the
value of the noise signal. The default is 0.

���
�	�&����	�
Block Category: Arithmetic

The ��	�
�����	
� block changes the unit of measurement of the data. You can
convert the unit of measurement within numerous categories, including:
acceleration, area, capacitance, charge, conductivity, current, energy, flow rate,
force, inductance, magnetic flux, mass, position, power, pressure, speed,
temperature, volume, and more. For example, you can convert from Fahrenheit to
Celsius, watts to kilowatts, or joules to BTUs.

Conversions are always displayed on the block.

Class: Indicates the category of measurement.

From: Indicates the unit of measurement for the data exiting the block. Click on the
DOWN ARROW to select a unit of measurement.

To: Indicates the unit of measurement for the data entering the block. Click on the
DOWN ARROW to select a unit of measurement.

����
���!#

�����
(� ������

#%.

���
*����

y
y y x x

y
=

= ≥




buffer buffer

previous

if

otherwise

, 2 1 1

Block Category: Time Delay

The ��	�����" block specifies a clocked unit delay. The input connector tabs are
marked b (for Boolean clock) and x (for main signal). When the Boolean clock does
not equal zero, the value contained in the single element buffer is copied to the block
output (where it holds this value until the next non-zero Boolean clock). The current
value of the main signal is stored in the unit buffer.

The ��	�����" block is intended for modeling a digital delay in a continuous
simulation. A typical digital delay is modeled by wiring a ��������	� block to the
Boolean input connector tab of the ��	�����" block. Use the �	������" block to
model a continuous delay.

Initial Condition: Sets an initial value for the output signal. The default is 0.

ID: Reserved for future use.

Checkpoint State: Contains the value of the unit delay at the checkpoint. If you
have not checkpointed your simulation via the Simulate > Simulation Properties
command, the value is 0.

����
���!#

�����
(� ������

#%1

Examples

1. Clocking the ��	���
�� block

If you are working with ��	�����" blocks, it is good programming practice to
create a clock signal that you can use in every simulation. A typical clock signal can
be generated as:

Here, a ��������	� block is assigned two external inputs:

• The top input is the time delay for the ��������	� block. The time delay value
for the ��������	� block is the amount of time the ��������	� block waits
before producing pulses. This time delay value must not be confused with the
amount of time delay generated by the ��	�����" block.

• The bottom input is the time between pulses.

The output of the ��������	� block is fed to the ���	���� clock. This variable
can be used anywhere in the simulation to clock ��	�����" blocks.

2. Introduction of a one-step delay

For a given signal, a one-step delay can be introduced as:

During simulation, the actual and delayed signals are plotted in the ��
� block. The
output of the ��	�����" block is delayed by one step (equal to 0.01 in this case) as
compared to the input.

����
���!#

�����
(� ������

#%-

3. Using a multi-step delay with cascaded ��	�����" blocks

To achieve multi-step delays, ��	�����" blocks that implement one-step delays,
can be cascaded. Consider the example where a three-step delay is introduced:

Three ��	�����" blocks, all clocked at the simulation step, are cascaded. Since
each ��	�����" introduces a one-step delay between its input and output, the
output of the third ��	�����" block is delayed by three steps compared to the
input. The ��
� block shows this behavior, with a simulation step size of 0.01.

����	,�

Block Category: Optimization

The ��)�
�� block works in conjunction with �
�����	�� blocks to solve
equations for unknowns using Newton-Raphson iteration. For each ��)�
��, there
should be a �
�����	�� block that is fed directly or indirectly by the ��)�
��.
The maximum iteration count, error tolerance, and perturbation are established under
the Implicit Solver tab in the dialog box for the Simulate > Simulation Properties
command. For more information, see Chapter 7, “Solving Implicit Equations.”

����
���!#

�����
(� ������

#+7

����6���
�	�

The ���������	
� block lets you create blocks bound to Dynamic Link Library
(DLL) functions. For more information, see Appendix B, “Extending the Block Set.”

DLL File: Indicates the name of the DLL file containing the user function.

Base Function: Indicates the base name of the function.

&����3��

Block Category: Annotation

The ���	���� block lets you name a signal and transmit it throughout your diagram
without the use of wires. For more information, see page 129.

&���	������
Block Category: Annotation

The ����
������ block separates a single vector wire into individual output
signals. Use the �������
��� block to bundle signals into a single vector wire.

����
���!#

�����
(� ������

#+!

&����
Block Category: Matrix Operation

The ���� block produces a single value summation of all the elements in the matrix.
The ���� block accepts one vector input and produces one scalar output.

Examples

,���)	��
�	���

Block Category: Annotation

The �	���
�	�	
��� block lets you create a specific wiring path. A
�	���
�	�	
��� block is essentially an input connector tab and an output
connector tab that are attached by a flexWire. Since �	���
�	�	
��� blocks don’t
take any additional computation time, you won’t see a decrease in performance
during a simulation.

Input to the �	���
�	�	
��� block can be scalar or vector.

 	�
y x x= 1 2bitwise XOR

Block Category: Boolean

The �
� block produces the bitwise exclusive OR of two to 256 scalar input signals.

If you click the right mouse button over the �
� block, the Boolean block menu
appears allowing you to assign a different function to the block.

����
���!#

�����
(� ������

#+#

Examples

1. Using the ��� block

Consider a variable y such that:

If a ≥ 4 or c ≤ 5, then y = cos(t); else y = 0. Also, if a ≥ 4 and c ≤ 5, y = 0

where t is simulation time. Furthermore, let t be the input to parameters a and c. This
system can be realized as:

As shown in the two ��
� blocks, the output of the �
� block evaluates to false in
the interval t = (4, 5), since both the inputs to the �
� block are true in this interval.
Consequently, y takes on the value of 0. The output of �
� evaluates to true in the
remaining parts of the simulation, and as a result, y takes on the value of cos(t) in
these periods.

#+�

'������ �'

���
	��5����������

This chapter covers the following information:

• Customizing VisSim start-up

• Customizing the VisSim window

• Creating custom implicit solvers

• Creating custom global optimizers

���
	��5������������
��
���
By adding arguments to the VisSim start up command, you can control such things
as how VisSim starts up, the block diagram file opened at start up, and whether
VisSim immediately simulates the opened diagram.

� To customize VisSim start-up

1. Refer to your Windows documentation for instructions on displaying the
properties of a program.

2. Under Windows 3.1+, enter one or more of the following arguments in the
Command Line box. Under Windows 95 and NT, click on the Shortcuts tab and
enter one or more of the following arguments in the Target box.

'������ �'

)�����	$	��
�	�
	�

#+(

If you enter more than one argument, separate them with spaces. If a block
diagram name is included in the argument list, it must be specified last.

Use this argument To

block-diagram-name Start VisSim and open the specified block
diagram.

-i [block-diagram-name] Start VisSim as an icon and optionally open a
block diagram.

-nb [block-diagram-name] Start VisSim without the start-up banner and
optionally open a block diagram.

-ne Suppress the simulation completion dialog box.

-r block-diagram-name Run a simulation read in from the specified block
diagram upon start up.

-re block-diagram-name Run a simulation read in from the specified block
diagram and exit VisSim upon completion.

5. Click on the OK button.

���
	��5����
����������,���	,
The VisSim window contains a menu bar, toolbars, scroll bars, a status bar, and a
diagram tree. You can display or hide these items at any time during a VisSim
session. For example, if you’re working on a large a block diagram, you may want to
hide the status bar and diagram tree so you can see as much of the diagram as
possible. When you simulate the diagram, you may want to display the status bar to
keep track of progress of the simulation.

� To hide or display VisSim window elements

• Do one or more of the following:

To display or hide Do this

Scroll bars Choose Edit > Preferences. Select the Preferences tab, and
select or clear the Show Horizontal Scroll Bar or Show
Vertical Scroll Bar check box.

Status bar Choose View > Status Bar.

Toolbar Choose View > Toolbar. Select or clear each toolbar check
box.

Diagram tree Drag the right edge of the diagram tree.

'������ �'

)�����	$	��
�	�
	�

#+%

���
	��5����
���
		�3��
You can create a custom toolbar that contains buttons for commands and blocks you
use most frequently. You can also create your own images for the buttons. The
custom toolbar is named User.

� To create a custom toolbar button

1. Choose View > Toolbar.

2. Activate the User option, if it is not already activated, then click on the OK
button, or press ENTER.

3. Choose Edit > Toolbar.

 The Customize Toolbar dialog box appears.

4. Under User Buttons, select a button number.

5. In the Function box, click on the DOWN ARROW and select the command to be
assigned a toolbar button. If you select:

• Blocks� (P), click on the DOWN ARROW in the Parameter box and select a
block to be associated with the toolbar button.

• Edit�Find (P), File�Add (P), or File�Open (P), you can optionally enter
a variable block name or file name in the Parameter box. If you do not enter
anything, VisSim opens the Find, File Add, or File Open dialog box when
you click on the toolbar button.

6. In the Help String box, you can optionally enter text that will appear in the
status bar when you point to the toolbar button. If you do not enter anything,
VisSim displays the default help string for the toolbar button.

7. Click on the Find button to choose a bitmap for the toolbar button. Pre-made
button bitmap images can be found in \VISSIM30\BITMAPS\TOOLBAR.

 Custom bitmap should be 16-pixels wide by 15-pixels high for the best display.

'������ �'

)�����	$	��
�	�
	�

#++

8. Click on the OK button, or press ENTER.

� To remove a custom toolbar button

1. Choose Edit > Toolbar.

2. From the toolbar button list, select the toolbar number that corresponds to the
toolbar button to be removed from the toolbar.

3. In the Functions box, click on the DOWN ARROW and select <none>.

4. Click on the OK button, or press ENTER.

���
	��5����	
�������������

����
In addition to changing general VisSim settings, you can also change many other
settings to customize how VisSim looks, such as the use of colors and text fonts in
your diagrams, the shape and color of connector tabs, and the amount of information
displayed with each block in a diagram.

These settings are controlled with the Edit > Preferences command and the
commands under the View menu. When you select a setting, it takes effect
immediately and remains in effect until you change it.

� To change the display settings in VisSim

• Do one or more of the following:

To Do this

Hide input connector tabs and
shrink the size of output connector
tabs

Choose View > Presentation Mode.

Hide wires and connector tabs,
freeze blocks in place, and with the
exception of interactive elements
on ������ and ���	
� blocks,
lock block parameter values

Choose View > Display Mode.

Typically this mode is used when there is
animation in your simulation or you’ve
constructed an instrumentation panel to monitor
and control your simulation.

Display mode can be turned on or off for
individual block diagram levels.

Color connector tabs according to
the type of data entering or exiting
the block

Choose View > Data Types.

The four types of data and their corresponding
connector tab colors are double-floating point
(red), signed integer (green), unsigned integer
(blue), and vector (magenta).

'������ �'

)�����	$	��
�	�
	�

#+.

To Do this

Display connector labels on
compound blocks

Choose View > Connector Labels.

Change how text is displayed on
blocks

Choose View > Fonts. Select the text attributes.

Character format can be selectively applied to
���
� blocks, as described on page 198.

Rich text format can be retained in
���
��
blocks, as described below.

Retain character format in

���
�� blocks

Choose Edit > Preferences. Select the
Preferences tab. Activate Use Rich Text
Format.

Change the color of the VisSim
screen; plotting background on
����, ����������, and
��������� blocks; wires; and
diagram text

Choose View > Colors. Select the color for the
corresponding screen element.

When you choose a default color for the
plotting background, VisSim uses the specified
color on all �
�
�, ����, and ����������
blocks except those whose background colors
were explicitly set in their Properties dialog
boxes.

Display block names beneath each
block

Choose Edit > Preferences. Select the
Preferences tab. Activate Training Mode
Labels. Then choose View > Block Labels.

Display parameter values, file
names, and block names beneath
each block

Choose Edit > Preferences. Select the
Preferences tab. Clear Training Mode Labels.
Then choose View > Block Labels.

Color compound blocks light blue Choose Edit > Preferences. Select the
Preferences tab. Activate Color Compound
Blocks.

Display block diagrams in black
and white

Choose Edit > Preferences. Select the
Preferences tab. Clear Color Compound Blocks
and Color Display.

����
�������
	���������
��	�&���
You can write an implicit static solver as a .DLL file. VisSim recognizes and uses a
user-written solver only if:

• It is named VSOLVER.DLL

• It resides in your current directory when you initiate implicit static solving

'������ �'

)�����	$	��
�	�
	�

#+1

• It contains an exported function called userSolver()

• The User Solver parameter in the dialog box for the Simulate > Optimization
Properties command is activated

�	�����2�����2	��3�������������
	���������
��	�&��
The following table lists the source files for building an implicit static solver. These
files are installed in \VISSIM30\VSOLVER and \VISSIM30\VSDK. They contain
code for building a simplified Gauss-Seidel static solver. You may find it easier to
edit the files to create your own static solver. To use these files, they must remain in
the directories in which they currently reside.

Source file Description

VSOLVER.FOR or
VSOLVER.C

A Fortran or C source file for the implicit static solver. The heart
of the solver is the vissimRequest() function that you call to obtain
the inputs to the
��������� blocks and to supply values to the
outputs of the ������� blocks. Using vissimRequest(), you can
write a wide variety of solvers. For more information, see the
description below.

VSOLVER.DEF A definition file with linker commands to build a .DLL file from
object code. Windows requires that you use a definition file to
link the object code.

VSOLVER.MAK A make file with rules for automatically building a .DLL file.

VSUSER.H A C language header file with function prototypes and command
definitions for the vissimRequest() function.

������&�����9�0���
?@���������
	���������
��	�&��
The vissimRequest() function is a general-purpose function for making requests to
VisSim. A user-written solver uses vissimRequest() to read and write optimization
information in a block diagram. The general format of vissimRequest() is:

long FAR vissimRequest(long req, long arg2, long arg3)

The first argument (long req) is a message code describing the action for VisSim to
take. The list of message codes is defined in the file named VSUSER.H, which is
installed in \VISSIM30\VSOLVER. The message codes that pertain to writing a
local static solver are listed in the table on the next page.

'������ �'

)�����	$	��
�	�
	�

#+-

Message code Description
VR_EXECUTE Executes the diagram on iteration without moving

time.

VR_GET_BLOCK_PARAMS Returns a pointer to a block’s parameters.

VR_GET_CONSTRAINTS Arg2 returns a vector of local constraint values.
Ordering of the elements vector can be determined by
the value of the ID parameter for the
���������
block. VisSim sorts in sequential order, from low to
high.

VR_GET_SOLVER_INFO Arg2 returns information related to the diagram and
the implicit solver dialog settings in the following
manner:
arg2[0] = number of constraints
arg2[1] = number of unknowns
arg2[2] = relaxation value
arg2[3] = maximum iteration value
arg2[4] = error tolerance value

VR_GET_UNKNOWNS Arg2 returns a vector of current local unknown output
values. Ordering of the elements vector can be
determined by the value of the ID parameter for the
������� block. VisSim sorts in sequential order,
from low to high.

VR_GET_UNKNOWNS_INPUT Arg2 returns a vector of current inputs to the
������� blocks. Ordering of the elements vector can
be determined by the value of the ID parameter for
the ������� block. VisSim sorts in sequential order,
from low to high. (This is useful for initial condition
setting.)

VR_GET_VERSION Returns the current version of VisSim.

VR_GET_VISSIM_STATE Gets information related to the global state of VisSim.
The information provided is a copy of the current
internal state; modifying it will not change VisSim’s
state. Arg2 should contain a pointer to a SIM_INFO
structure, defined in VSUSER.H, which will be filled
in by the vissimRequest() function. Arg3 should
contain the size of this structure (sizeof(SIM_INFO))
to allow for version compatibility checking.

VR_SET_UNKNOWNS Sets diagram unknowns based on the vector passed as
arg2. Ordering of the elements vector can be
determined by the value of the ID parameter for the
������� block. VisSim sorts in sequential order,
from low to high.

'������ �'

)�����	$	��
�	�
	�

#.7

"�������������
	���������
��	�&��
Most languages have a Project Build facility that automates the process of building a
.DLL file. The following procedure guides you through the process of building a
project in general terms. Refer to the documentation for the application language
you’re using for specific instructions.

� To build a custom implicit solver

1. Invoke the Compiler environment.

2. Add all the source files listed in on page 268 to the project or make file.

3. Under project options, specify the project type as a Windows Dynamic Link
Library (.DLL).

4. Under compiler preprocessor options, specify \VISSIM30\VSDK as the include
directory.

5. Build the project.

������
����	��
����
�3�	���,�
�������
	���������
��	�&��
To indicate the number that VisSim uses to sort the block when presented as a vector
in a user-written solver, enter it in the ID box of the Constraint Properties dialog
box. VisSim does not require the ID to be unique or contiguous; it sorts them in
sequential order. The default is 0.

����
�������
	����	3���	�
���5���
You can write a global optimizer as a .DLL file. VisSim recognizes a user-written
global optimizer when it is named VOPT.DLL and resides in your current directory.
VOPT.DLL should also contain an exported function in the following format:

int FAR EXPORT USER_OPT_FUNC(DOUBLE *unknownVec, int
unknownCount, int costCount, int globalConstraintCount);

Optimize has a prototype declared in VSUSER.H.

Before you initiate global optimization, make sure VOPT.DLL is in your current
directory and the User Solver parameter in the dialog box for the Simulate menu’s
Optimization Setup command is activated.

'������ �'

)�����	$	��
�	�
	�

#.!

�	�����2�����2	��3�������������
	����	3���	�
���5��
The following table lists the source files for building a global optimizer. These files
are installed in \VISSIM30\VSOLVER and \VISSIM30\VSDK.

Source file Description

VOPT.C A C source file for a sample global optimizer. The heart of the
optimizer is the vissimRequest() function that you call to obtain
the inputs to the
��� blocks and to supply values to the outputs
of the �����
�
�������� blocks. Using vissimRequest(), you
can write a wide variety of optimization algorithms. For more
information, see the description below.

VOPT.DEF A definition file that contains linker commands to build a .DLL
file from object code.

VOPT.MAK A make file that contains rules for automatically building a .DLL
file.

VSUSER.H A C language header file that contains function prototypes and
command definitions for the vissimRequest() call.

IMPSIM.LIB VisSim import library that describes the address of
vissimRequest().

������&�����9�0���
?@���������
	����	3���	�
���5��
The vissimRequest() function is a general-purpose function for making requests to
VisSim. A user-written global optimizer uses vissimRequest() to read and write
global optimization information in a block diagram. The general format of
vissimRequest() is:

long FAR vissimRequest(long req, long arg2, long arg3)

The first argument (long req) is a message code describing the action for VisSim to
take. The list of message codes is defined in the file named VSUSER.H, which is
installed in \VISSIM30\VSOLVER. The message codes that pertain to writing a
global optimizer are as follows:

Message code Description
VR_GET_GLOBAL_COST Writes a vector of current
��� block input

values into a vector pointed at by arg2.

VR_GET_GLOBAL_CONSTRAINTS Writes a vector of current ����������������
block input values into a vector pointed at by
arg2.

VR_GET_GLOBAL_CONSTRAINT_BOUNDS Writes a vector of ���������������� block
low bounds into a vector pointed at by arg2, and
a vector of ���������������� block high
bounds into a vector pointed at by arg3.

'������ �'

)�����	$	��
�	�
	�

#.#

Message code Description
VR_GET_GLOBAL_OPT_INFO Gets information related to the global

optimization settings in the dialog box for the
Optimization Setup command. The information
provided is a copy of the current optimization
state; modifying it will not change VisSim’s
state. Arg2 should contain a pointer to an
OPT_INFO structure, defined in VSUSER.H,
which will be filled in by the vissimRequest()
call. Arg3 should contain the size of this
structure (sizeof(OPT_INFO)) to allow for
version compatibility checking.

VR_GET_GLOBAL_UNKNOWNS Writes a vector of current �����
�
��������
block output values into the vector pointed at by
arg2. Ordering of the elements vector can be
determined by the value of the ID parameter for
the �����
�
�������� block. VisSim sorts in
sequential order, from low to high.

VR_GET_GLOBAL_UNKNOWNS_INPUT Writes a vector of current �����
�
��������
block input values into the vector pointed at by
arg2. Ordering of the elements vector can be
determined by the value of the ID parameter for
the �����
�
�������� block. VisSim sorts in
sequential order, from low to high.

VR_GET_GLOBAL_UNKNOWN_BOUNDS Writes a vector of �����
�
�������� block
low bounds into a vector pointed at by arg2, and
a vector of �����
�
�������� block high
bounds into a vector pointed at by arg3.

VR_GET_VERSION Returns the current version of VisSim.

VR_GET_VISSIM_STATE Gets information related to the global state of
VisSim. The information provided is a copy of
the current internal state; modifying it will not
change VisSim’s state. Arg2 should contain a
pointer to a SIM_INFO structure, defined in
VSUSER.H, which will be filled in by the
vissimRequest() function. Arg3 should contain
the size of this structure (sizeof(SIM_INFO)) to
allow for version compatibility checking.

VR_RESET_XFERS For internal use only.

VR_RUN_SIMULATION Starts a simulation run.

VR_SET_GLOBAL_UNKNOWNS Sets current �����
�
�������� block output
values from arg2.

'������ �'

)�����	$	��
�	�
	�

#.�

"�������������
	����	3���	�
���5��
Most languages have a Project Build facility that automates the process of building a
.DLL file. The following procedure guides you through the process of building a
project in general terms. Refer to the documentation for the application language
you’re using for specific instructions.

� To build a custom global optimizer

1. Invoke the Compiler environment.

2. Add all the source files listed in on page 271 to the project or make file.

3. Under project options, specify the project type as a Windows DLL.

4. Under compiler options, specify the following:

• Memory Model to be Large.

• Windows Prolog/Epilog to be Real Mode_far Functions.

5. Build the project.

#.%

'������ �"

/
�������
���"�	�����

This appendix covers the following information:

• Writing DLLs

• Building DLLs

• Calling conventions

• Simulation level functions

• Block level functions

• Exported functions

• Debugging DLLs

• Binding DLLs to ���������	
� blocks

• Adding user-written blocks to the Blocks menu

����3������
���
VisSim provides an Application Programming Interface (API) that allows you to
extend the standard block set by creating Dynamic Link Library (DLL) files and
binding them to ���������	
� blocks. A DLL file is like a regular executable file
with the exception that it cannot start execution on its own. A DLL function can be
called just like functions that are part of a normal executable file.

The following diagram shows how files are processed to create VisSim DLLs. This
diagram steps you through the process of creating a DLL from a C source file;
however, you can also create DLLs in Fortran and Pascal.

'������ �"����*����	��
�&�
�����

��

#.+

The main steps in the creation of VisSim DLLs are:

1. Create or edit an existing C, Fortran, or Pascal source file.

2. Create a project DLL for your compiler.

3. Execute a build operation, which compiles your source code into an object file.

4. Link the object file with VISSIM32.LIB to produce a DLL.

���
�����2	��,��
����*88�
You can write DLLs in any language, provided the language has the following
capabilities:

• 64-bit floating point array parameters

• Pointers to 16-bit integers

• _��
���� calling conventions (default for Microsoft Fortran and Delphi
Pascal)

Example DLLs written in C, Fortran, and Pascal are distributed with VisSim and
reside in subdirectories under the \VISSIM30\VSDK directory.

"����������*88
Most languages have a Project Build facility that automates that process of building
a DLL. The following procedure guides you through the process of building a
project in general terms. Refer to the documentation for the application language
you’re using for specific instructions.

1. Invoke the Compiler environment.

'������ �"����*����	��
�&�
�����

��

#..

2. Add the following files to the project file:

• All the source files

• All the resource files

• VISSIM32.LIB

3. Under project options, specify the project type as a Windows Dynamic Link
Library (.DLL).

4. Under compiler preprocessor options, specify \VISSIM30\VSDK as the include
directory.

5. Build the project.

<	,��������
�����
	���*88
There are three types of functions used for communication between VisSim and your
DLL:

• Simulation level functions

• Block level functions

• VisSim exported functions

Simulation level functions and block level functions are DLL functions VisSim can
call via a ���������	
�'block. Simulation level functions are called once per
simulation-wide event. Block level functions, on the other hand, are called once for
each ���������	
� block. If you have no ���������	
n blocks, no calls are
made; if you have 100 ���������	
� blocks, they are called 100 times.

Exported functions are VisSim functions that you can call from a DLL. These
functions allow a DLL to request information from VisSim, as well as instruct
VisSim to perform specific actions.

���������	�&��
�	��
The following information pertains to the DLL functions described in the next
several sections:

• Functions are shown in C syntax. For Fortran and Pascal syntax, look in the
sample source files in subdirectories under \VISSIM30\VSDK.

• All arguments are pointers to data types. Since Fortran passes variables by
reference, a normally declared Fortran variable can be passed as an argument.

'������ �"����*����	��
�&�
�����

��

#.1

������
�	����&���2���
�	��
There are two simulation level functions:

• vsmInit(). Called at VisSim start-up. You use this function to insert one or more
blocks in the Blocks menu.

• vsmEvent(). Called at simulation-wide events, such as simulation start, end of
time step, and simulation end.

��
����5�
�	��2���
�	����&��
��
?@
This DLL function is called by VisSim to allow the DLL to perform initialization,
particularly to insert ���������	
� blocks into the Blocks menu.

EXPORT32 int EXPORT PASCAL vsmInit()

To have vsmInit() be called when VisSim starts up, you must tell VisSim the path to
your DLL, as described on page 288.

���
���,�����&��
�2���
�	����&��/&��
?@
This function is called by VisSim to notify the DLL of interesting simulation-wide
events.

LPSTR PASCAL vsmEvent(int msg, int wParam, long *arg);

Message Function

VSE_POST_SIM_END VisSim has stopped, either from user stop or time
expiration.

VSE_POST_SIM_START VisSim has initialized all blocks and is about to
start.

VSE_PRE_SIM_START VisSim is about to start a simulation but has not
initialized any blocks.

VSE_SIM_RESTART VisSim is restarting due to auto-restart.

VSE_TIME_STEP Simulation has completed a time step.

WM_COMMNOTIFY Comm port data is ready.

WM_DESTROY VisSim is exiting.

WM_VSM_WINDOW_HANDLE Handle to VisSim main window.
arg: Window handle

'������ �"����*����	��
�&�
�����

��

#.-

"�	�����&���2���
�	��
In order to interface smoothly with VisSim, VisSim can call seven Pascal-style
functions that share the base DLL function name and have an event code suffix
corresponding to a VisSim event. You should supply a function for each event that
you want your DLL code to handle. The additional functions are described below:

Function name Purpose When it’s called

userBlock() Block time step Each simulation time step

userBlockEvent() Block event handler On occurrence of a block related
event

userBlock PA() Block parameter allocation Block creation

userBlock PC() Block parameter change Right button click

userBlock PI() Block parameter initialization Immediately after userBlockPA()

userBlock SE() Block simulation end Simulation end time

userBlock SS() Block simulation start Simulation start time

The term userBlock is a placeholder for your DLL base function name. You specify
the DLL base function name when you bind the DLL to a ���������	
� block.
For more information, see page 287.

You can have any number of user-written blocks in a single DLL file.

All definitions are kept in the VSUSER.H file. This file should be included in every
user DLL.

������
���2���
�	������������	?@
The userBlock() function is called at each time step to calculate simulation values. It
is the only function a DLL is required to export.

The userBlock() function may be called an arbitrary number of times during a time
step interval. The number of calls depends on the integration method and whether
the VBF_HAS_STATE flag is active for a block. Note that the outputs are not
preserved from call to call. Therefore this function must write to its outputs at each
call.

void PASCAL userBlock(double param[], double inSig[], double
outSig[])

'������ �"����*����	��
�&�
�����

��

#17

The inSig array is filled by VisSim with the values presented to the input connector
tabs on the ���������	
� block. Store the result values in the outSig array. VisSim
presents the outSig values to the corresponding output connector tabs on the
���������	
� block.

/&��
���������2���
�	������������	/&��
?@
The userBlockEvent() function is called at block events, such as block repaint, end
of time step, and simulation end.

LPSTR PASCAL userBlockEvent(HWND h, int msg, WPARAM wp,
LPARAM lp)

This function lets you save and restore mixed data types. Note that the arguments are
the same as Windows or Windows NT event functions.

VisSim calls your function with the following messages:

Message Description

WM_VSM_ADD_CONNECTOR Signals a user-request for a connector to be
added to a block.
wp: Current count
lp: 1 if input

0 if output

WM_VSM_BLOCK_INFO Used for writing a custom optimizer.

WM_VSM_BLOCK_PLACED Signals that a block has been placed in the
diagram.
lp: Block handle

WM_VSM_BLOCK_SETUP This event is generated only if there is no
userBlockPC() function defined for the block.
This event is generated when you click the right
mouse button on the block.
wp: Internal ID
lp: Block handle

WM_VSM_CHECKPOINT_STATE Signals a user-request to checkpoint system
states; that is, set the checkpoint buffer to the
current state value.

WM_VSM_CONNECTOR_NAME Returns string of connector label name. Null if
no label is desired.
wp: Port number (negative if output)
lp: Block handle

'������ �"����*����	��
�&�
�����

��

#1!

Message Description
WM_VSM_CREATE Is called when a user block is created. You can

return flags to customize block treatment. (For
more information, see “Return flags for
WM_VSM_CREATE,” below.)
wp: 0 if create from file

1 if create from menu
2 if create from clipboard

lp: Block handle

WM_VSM_DEL_CONNECTOR Signals a user-request for a connector to be
deleted from a block.
wp: Current count
lp: 1 if input

0 if output

WM_VSM_DESTROY Is called when user block is destroyed.
lp: Block handle

WM_VSM_FILE_CLOSE Reserved.

WM_VSM_FILE_READ Signals that block and all its parameters have
been read in from file.
lp: Block handle

WM_VSM_GET_BLOCK_BITMAP Reserved.

WM_VSM_GET_BLOCK_NAME Provides a block with a custom name. Return a
null terminated string that contains the new
name. The name may contain newline characters.

WM_VSM_GET_PARAM_DESC Provides a data descriptor for saving and
restoring data. Return a text string that describes
your data by following these guidelines:

Format character Data Type
i 2-byte integer

I 4-byte integer

f 4-byte float

F 8-byte float

c Single-byte character

All of the above format characters can take an
optional count suffix, which is enclosed in square
brackets. For example to save two 8-byte floats
and a 32-character string in C, use the following
string notation:

“F [2] c[32]”

In Fortran, the string notation is:

‘F [2] c[32]’ c

'������ �"����*����	��
�&�
�����

��

#1#

Message Description

WM_VSM_INFO Reserved.

WM_VSM_RETAIN_STATE_
 RESTART

Restarts with retained states.
lp: Block handle

WM_VSM_SIM_RESTART Signals restart due to continue or single step.
lp: Block handle

WM_VSM_SNAP_STATE Signals a user-request to snap system states; that
is, set the initial condition to the current state
value.

WM_VSM_STOP_SIM Signals that VisSim has stopped, either by user
or time expiration.
wp: 1 if single step
lp: Pointer to parameter vector

WM_VSM_SUPPRESS_WARN_
 UNCONNECT

Checks to suppress the unconnected input
warning message. Return 1 if suppression is
desired.
wp: Port number (negative if output)
lp: Block handle

9�
����2�����2	��$:J��:J�9/'�/

Flag Description

VBF_HAS_STATE Tells VisSim that block has state and can break
an algebraic loop. VisSim calls this block once,
before all other blocks, to present an initial
condition; then the block is called during
normal diagram execution.

VBF_USE_SIGNAL_DESCRIPTORS Block input and output vector are vector of type
SIGNAL (not double).

VBF_ALLOC_VEC_OUTPUT Causes VisSim to automatically allocate output
matrix for matrix input blocks.

VBF_EXECUTE_ALWAYS Causes VisSim to execute the block regardless
of graph connectivity.

VBF_ALLOW_VEC_CHAMELIONS Causes connectors to accept scalar or vector
connections.

VBF_STRAIGHT_WIRES Causes wires to be drawn as straight lines rather
than auto-routing.

VBF_MENU_ONLY This is a menu item only and no block is
created; however, the userBlockEvent()
function is called. This flag is useful for menu
select to dialog.

'������ �"����*����	��
�&�
�����

��

#1�

)�����
������	��
�	��2���
�	������������)'?@
The userBlockPA() function is called when you first enter a DLL file/function pair in
the dialog box for the ���������	
� block, or when a diagram is first read into
VisSim. Note: This call is no longer required if block menu insertion is used.

long PASCAL userBlockPA(short *ppCount)

This function returns the parameter storage requirements, in bytes, for the
���������	
� block, and the number of prompted parameters. If you want VisSim
to prompt for parameter values, set ppCount to the desired number. The maximum
value for ppCount is 12. You need to allocate eight bytes for each prompted
parameter. You can request additional storage for a function’s private use. This
additional storage can be accessed as array elements of the parameter vector after the
first ppCount elements.

When this function is not supplied, no parameter storage is allocated.

)�����
����������2���
�	������������)�?@
The userBlockPC() function is called when you click the right mouse over the
���������	
� block.

char * PASCAL userBlockPC(double * param)

This function lets you change block parameters for the ���������	
� block. If you
want to create a dialog box to browse and set parameter values, you can do so and
return a NULL pointer. If you want VisSim to browse and set parameter values for
you, you should return a pointer to a NULL terminated string. The string should
contain semicolons to separate each parameter prompt. You may have up to 12
parameters using this default method of parameter setting.

)�����
������
����5�
�	��2���
�	������������)
?@
The userBlockPI() function is called at block creation time, either from the menu or
a file, for parameter initialization. It lets you provide initial values for parameters.

void PASCAL userBlockPI(double * param)

This function is called immediately after the parameter allocation function
userBlockPA().

������
�	������2���
�	������������	�/?@?@
The userBlockSE() function is called just after a simulation ends to perform post
simulation processing.

void PASCAL userBlockSE(double param[], long * runCount)

������
�	���
��
�2���
�	������������	��?@
The userBlockSS() function is called just prior to the start of a simulation to perform
initialization processing necessary for a simulation run.

void PASCAL userBlockSS(double param[], long * runCount)

'������ �"����*����	��
�&�
�����

��

#1(

/ �	�
���2���
�	��
The seven exported functions are described below.

����������2	���
�	����0���
���&�����9�0���
?@
The vissimRequest() function provides a general, extensible request mechanism for
obtaining information from VisSim.

EXPORT32 long vissimRequest(long req, arg2, arg3);

The first argument (long req) is a message code describing the action for VisSim to
take. The message codes that pertain to writing a custom block are as follows:

Message Description

VR_DISABLE_BLOCK_TYPE Removes block matching name string from
Blocks menu.
arg1: LPSTR name string

VR_EXECUTE Runs diagram but doesn’t change time (no
integration).

VR_GET_BLOCK_PARAMS Returns block parameter pointer.
arg1: Block handle

VR_GET_CLEAR_BLOCK_ERR Clears red error state on block. Uses currently
executing block if block handle in arg1 is null.
arg1: Block handle (opt.)

VR_GET_CONSTRAINTS Gets constraint values
arg1: Double * constraint

VR_GET_GLOBAL_CONSTRAINT_
 BOUNDS

Gets global constraint bounds.
arg1: Double * upper bound
arg2: Double * lower bound

VR_GET_GLOBAL_CONSTRAINTS Gets global constraints.
arg1: Double *

VR_GET_GLOBAL COST Gets global cost.
arg1: Double * global cost

VR_GET_GLOBAL_OPT_INFO Gets global optimization settings.
arg1: OPT_INFO

VR_GET_GLOBAL_UNKNOWN_
 BOUNDS

Gets global unknown bounds.
arg1: Double * upper bound
arg2: Double * lower bound

VR_GET_GLOBAL_UNKNOWNS Gets global unknowns.
arg1: Double *

VR_GET_GLOBAL_UNKNOWNS_
 INPUT

Gets global unknown input.
arg1: Double * global unknown initial

condition

'������ �"����*����	��
�&�
�����

��

#1%

Message Description

VR_GET_SOLVER_INFO Gets settings from Implicit Solver tab in the
Simulation Properties dialog box.
arg1: Pointer to Implicit Solver

VR_GET_STARTUP_DIR Returns VisSim directory string.

VR_GET_SUB_VERSION Returns version letter suffix.

VR_GET_UNKNOWNS Gets unknown values.
arg1: Double * unknowns

VR_GET_UNKNOWNS_INPUT Get unknown inputs.
arg1: Double *

VR_GET_VERSION Returns major version in high byte and minor
version in low byte.
arg1: SIM_INFO pointer

VR_GET_VISSIM_STATE Gets current simulation state and copy to
pointer in arg1.

VR_GET_WINDOW_HANDLE Returns VisSim main window handle. Useful
for model dialog creation.

VR_REALLOC_USER_PARAM Reallocates parameter vector and returns newly
reallocated pointer.
arg1: Block handle
arg2: New parameter size

VR_RESET_XFERS For internal use only.

VR_SET_BLOCK_CONNECTOR_
 COUNT

Sets the connector count on the block.
arg1: Block handle
arg2: input # = upper word

output # = lower word

VR_SET_BLOCK_MENU Adds user-defined block to Blocks menu.
arg1: Pointer to initialized

USER_MENU_ITEM vector

VR_SET_CONNECTOR_CHAR Sets indicator character on block connector.
arg1: Character to set

VR_SET_CONNECTOR_LABEL For internal use only.

VR_SET_GLOBAL_UNKNOWNS Sets global unknowns from supplied vector.
arg1: Double * global unknown

VR_SET_UNKNOWNS Sets unknown values from user-supplied
vector.
arg1: Double * unknown

VR_SNAP_STATES Causes VisSim to use current integrator/delay
state as initial condition.

'������ �"����*����	��
�&�
�����

��

#1+

��
�������
�������
�	��
��������
�������?@
This function stores the current simulation time in the double precision float variable
pointed to by simTime.

EXPORT32 void PASCAL getSimTime(DOUBLE *simTime);

��
�������
�������
�	��
�����
�������
��������
��?@
This function stores the current simulation time step in the double precision float
variable pointed to by simTimeStep.

EXPORT32 void PASCAL EXPORT getSimTimeStep(DOUBLE
*simTimeStep);

)���
���3���������������3:���?@
This function prints a dialog box containing a debugging message. Because you can’t
perform normal screen I/O under Windows or Windows NT, VisSim provides
debMsg to display information pertaining to the variables for your userFunction
block’s function. The format is identical to the C printf() function. Since this
function allows an arbitrary number of arguments, it must be called using the C
language convention. To call it from Fortran or Turbo Pascal, for example, you must
declare it as C language code. VisSim displays the output string in a standard dialog
box that contains a Retry, Ignore, and Abort button. Press Retry or Ignore to
continue the simulation. Press Abort to cancel the simulation.

EXPORT32 int CDECL EXPORT debMsg P((char LPSTR fmt , ...));

9�0���
�������
�	���������
	�������
�	�?@
This function requests that VisSim stop a simulation.

EXPORT32 void PASCAL EXPORT stopSimulation(int stopVal);

If stopVal is 1, the current simulation run is stopped. If you have activated the Auto
Restart parameter under the Range tab in dialog box for the Simulate > Simulation
Properties command, VisSim starts the next simulation run. If stopVal is 2, all
simulation runs are stopped.

6�������	������
"�	��/��?@
This function requests that VisSim flag the currently executing block in red. All
nested blocks will be flagged in red as well. To clear a flagged block, click the right
mouse button on the block.

EXPORT32 void PASCAL EXPORT setBlockErr();

'���������
�������
����"�	��:���?@
This function adds a block (or menu item) to the VisSim menus.

EXPORT32 void EXPORT setUserBlockMenu P((USER_MENU_ITEM *));

'������ �"����*����	��
�&�
�����

��

#1.

This functions recognizes one argument, which is a pointer to an array of structures.
The structures define the menu name, DLL name, number of inputs, number of
outputs, number of parameters, and help string. The format of the structure is as
follows:

typedef struct {
 char * menuName;
 char * funcName;
 int inputCount;
 int outputCount;
 int paramCount;
 char * helpText;
} USER_MENU_ITEM;

You need one structure for every block (or menu item).

In addition, the last element in the array of structures that is passed back in must be
{0}.

*�3����������
�
The following guidelines will make it easier to debug your DLLs:

• MSVC lets you set a breakpoint in your DLL before running VisSim.

• Set VISSIM32.EXE as the calling program by choosing Build > Settings >
Debug. This starts VisSim automatically when you press F5 (or choose Debug >
Go).

• Use conditional breakpoints to get control near the problem area.

• Single-step with values in watch window to find problems.

• If your program hangs, press CTRL+ALT+PRTSCRN (or choose Debug > Break) to
return control to the debugger. This works best under Windows 95 and
Windows NT.

• On Debug > Break or a General Protection Fault, use View > Stack Trace to
find the location of the offending instruction.

• Floating point errors, if continued, often result in General Protection Fault that
point to source line of floating point error.

"���������*88�
	�������6���
�	��3�	��
When you bind a DLL to a userFunction block, VisSim calls the DLL each time the
block is executed.

� To bind a DLL to a userFunction

1. Insert a ���������	
� block in your diagram.

2. Choose Edit > Block Properties.

'������ �"����*����	��
�&�
�����

��

#11

3. Point to the ���������	
� block and click the mouse.

4. Do the following:

• In the DLL File Name box, enter the name of the DLL file containing the
user function.

• In the Base Function Name box, enter the base name of the function.

5. Click on the OK button, or press ENTER.

'�������������,��

���3�	���
	�
���"�	��������
This allows VisSim to invoke the DLL at VisSim start-up, and allows the DLL to
insert blocks into the Block menu by calling setUserBlockMenu().

� To add a user-written block to the Blocks menu

1. In VisSim, choose Edit > Preferences.

2. Click on the Addons tab.

3. Double-click on the ellipsis (…) and type in the path to the DLL function, or
click on the … button to locate the DLL function.

4. Click on the OK button, or press ENTER.

#1-

'������ ��

�		�3	 ������	��	���
��8�3������

VisSim provides a wide range of toolbox functions and diagram components to
further enhance your modeling and simulation capabilities. Because they are in
.VSM file format, you can easily incorporate them into your diagrams using the File
menu’s Add command or the ����
 block.

�		�3	 ��
The toolbox libraries supplied with VisSim include functions for controls, electro-
mechanical design, Padé approximations, and signal generation. VisSim also
provides a toolbox library of miscellaneous functions (called Tools).

�	�
�	���
		�3	 ���3�����?K�
��
:�7K�448"4BK�4H�948�@
Toolbox function Description

DERIV_A.VSM Continuous derivative model

DERIV_D.VSM Discrete derivative function

DIFFR.VSM Discrete difference model

HYST_CTL.VSM Hysteresis controller

HYSTER.VSM Hysteresis function

LAG.VSM General first order unity gain all pole low pass filter

LEAD.VSM General first order lead unity gain compensator

P_CTL.VSM Proportional (P) controller

PI_CTL.VSM Proportional Integral (PI) controller

PID_CTL.VSM Proportional Integral Derivative (PID) controller

'������ �����+���"�*
���
)��������
'	"���	��

#-7

Toolbox function Description

RATE_LIM.VSM Rate limited controller

RFB_CTL.VSM Rate feedback controller

TF1_CONT.VSM Continuous first order transfer function

TF1_DISC.VSM Discrete first order transfer function

TF2_CONT.VSM Continuous second order transfer function

TF2_DISC.VSM Discrete second order transfer function

TRIM_INT.VSM Trimmed integrator - finds initial state for zero
derivative

ZINTBR.VSM Digital integrator (backward rectangular)

ZINTFR.VSM Digital integrator (forward rectangular)

ZINTTR.VSM Digital integrator (trapezoidal)

/���
�	������������
		�3	 ���3�����?K�
��
:�7K�448"4BK/8/�<:/�<@
Toolbox Function Description

A2D.VSM Analog-to-digital converter model with settable dT and
bit length

ACDQ_MOT.VSM Three-phase AC motor model utilizing DQ coordinate
transformation

D2A.VSM Digital-to-analog converter model with settable dT and
bit length

DC_MOT.VSM Armature controlled DC motor

ENCODER.VSM Encoder model

MUX4.VSM Four-channel multiplexer

PWM.VSM Pulse wave modulation model

)��L�
		�3	 ���3�����?K�
��
:�7K�448"4BK)'*/@
Toolbox Function Description

PADE1.VSM First order Padé approximation to time delay

PADE2.VSM Second order Padé approximation to time delay

PADE3.VSM Third order Padé approximation to time delay

PADE4.VSM Fourth order Padé approximation to time delay

'������ ��

+���"�*
���
)���������
'	"���	��

#-!

�������������
�	��
		�3	 ���3�����?K�
��
:�7K�448"4BK�
��/H@
Toolbox Function Description

3_PHASE.VSM Three-phase sinusoidal signal generator

CAL_TIME.VSM Simulation time in day, hour, minutes

DT.VSM Simulation time in seconds

SAWTOOTH.VSM Generates a sawtooth wave form

SQR_WAVE.VSM Generates a square wave form

TRIANGLE.VSM Generates a triangular wave form

�		���
		�3	 ���3�����?K�
��
:�7K�448"4BK�448�@
Toolbox Function Description

AVG_VAL.VSM Average (mean) value estimator for periodic signals

COUNTER.VSM Pulse counter

MAG_PHAS.VSM Computes the magnitude ratio and phase margin between
two input signals

MAX_VAL.VSM Detects the high peak value every cycle of a periodic
wave form

MIN_VAL.VSM Detects the peak low value every cycle of a periodic
wave form

PERIOD.VSM Wavelength estimator for a periodic signal

PH_DIFF.VSM Phase difference estimator

RMS.VSM Computes the root mean square (RMS) value of a signal

SWEEP.VSM Provides parameter sweep settings

VEC_ANLY.VSM Amplitude - phase vector display

'������ �����+���"�*
���
)��������
'	"���	��

#-#

�	��	���
�
The components libraries supplied with Professional VisSim include DSP,
dynamical, electro-mechanical, electric, hydraulic, process control, thermal, and
turbine components.

*�)���3�����?K�
��
:�7K�4:)H/H�K*�)@
Component Description

CONVOLXI.VSM Analytical and numerical solutions for an impulse
response system

KFILT.VSM Filter for estimating particle coordinates and velocity
components

WAVELETS.VSM Two-parameter wavelet generation

*������������
�����3�����?K�
��
:�7K�4:)H/H�K*MH�M�@
Component Description

ANTENNA.VSM Position control of flimsy antenna

REEL.VSM Control of wire speed on a motor-controlled take-up reel

ROBEAM3.VSM Reduced-order steady-state beam model

/���
�	��������������3�����?K�
��
:�7K�4:)H/H�K/8/�<:/�<@
Component Description

2DCMOTS.VSM Two motors connected by a flexible belt

CRANE.VSM Movement of a crane payload

HOIST.VSM One mass nonlinear hoistway

STEPPER.VSM Stepper motor for Variable Reluctance or Permanent
Magnet types

/���
��������3�����?K�
��
:�7K�4:)H/H�K/8/��9
�@
Component Description

POWERSUP.VSM Two-diode, full-wave rectified DC power supply

'������ ��

+���"�*
���
)���������
'	"���	��

#-�

<�����������3�������?K�
��
:�7K�4:)H/H�K<M*9'�8
�N@

K'���'�49���3����
Component Description

HYDMOTOR.VSM Hydraulic motor

TWNCHMAC.VSM Double-sided actuator

K
H�8�*/���3����
Component Description

GENDEFS.VSM General definitions for hydraulic library

K:/�<84'*���3����
Component Description

LINEAR.VSM Linear mechanical load

ROTATNAL.VSM Rotational mechanical load

K:
H4984����3����
Component Description

BEND.VSM Fluid flow through a pipe bend

SUDCONTR.VSM Sudden contraction of fluid due to an exit from a large
chamber into a pipe

SUDEXPNS.VSM Sudden expansion of fluid due to exit into a large
chamber

K:
�����3����
Component Description

MASSWLIM.VSM Mass with limits

VOLUME.VSM Capacitance volume effects

K49
6
�/���3����
Component Description

ORIFICE.VSM Flow through an orifice

K)
)/���3����
Component Description

CONDUIT.VSM Pressure gradient evaluation for laminar and turbulent
flow through conduits

'������ �����+���"�*
���
)��������
'	"���	��

#-(

K)4$984�����3����
Component Description

POWRLOSS.VSM Power loss and temperature rise in fluid

K)�:)����3����
Component Description

POSDSPMP.VSM Positive displacement pump

PRSCMPMP.VSM Pressure compensated pump.

K�)8�:/9����3����
Component Description

1ORFSPLT.VSM Split one fluid stream into two (orifice at the exit on one
of the outlet ports)

3WAYSPLT.VSM Splits one fluid stream into three

MERGE.VSM Merges two fluid streams into one

MERGE3LN.VSM Merges three fluid streams into one and includes an
orifice on the exit

MERGEALG.VSM Joins two streams algebraically without introducing a
pressure state

MRGALG3I.VSM Joins three streams algebraically without introducing a
pressure state

PLNMMERG.VSM Merges two fluid streams into one and the downstream
boundary condition is the flow rate

Component Description

PLNMRG3L.VSM Merges three fluid streams into one and the downstream
boundary condition is the flow rate

PRSTRAN.VSM Pressure transients in hydraulic conduits

SPLTWORF.VSM Splits one fluid stream into two (orifice at the exit of each
outlet port)

K�'8�/����3����
Component Description

REGLVALV.VSM Pressure regulating valve

RELFVALV.VSM Pressure relief valve

'������ ��

+���"�*
���
)���������
'	"���	��

#-%

)�	������	�
�	����3�����?K�
��
:�7K�4:)H/H�K)94�/��@
Component Description

BEER.VSM Beer brewing model

CSTR.VSM Simple continuous stirred tank reactor model

DISTIL.VSM Binary distillation column

NISOTH.VSM Non-isothermal continuous stirred tank reactor model

���������	�
�	����3�����?K�
��
:�7K�4:)H/H�K�</9:'8@
Component Description

HEATEXCH.VSM Heat exchanger model

���3������3�����?K�
��
:�7K�4:)H/H�K��9"
H/@
Component Description

GT2.VSM Twin spool gas turbine model

#-.

'������ �*

�������"�	���*�������

VisSim comes with numerous block diagrams that cover a broad spectrum of
applications and illustrate many of VisSim’s fundamental design and simulation
features. The sample block diagrams reside in the subdirectories under
\VISSIM30\APPEXAMPL. This appendix describes the sample block diagrams
provided by VisSim.

This subdirectory Contains this type of diagram

\AEROSPAC Aerospace diagrams

\ANIMATE Animation diagrams

\BIOPHYS Biophysical diagrams

\BUSINESS Business diagrams

\CHEMENG Chemical engineering diagrams

\CTRL_DES Control design diagrams

\DYN_SYS Dynamic system diagrams

\ELECTRO Electro-mechanical diagrams

\ENVIRON Environmental diagrams

\FIXPTDSP Fixed Point DSP diagrams

\MMI Man-machine interface diagrams

\MOTION Motion control diagrams

\OPTIMIZE Optimization diagrams

\POWER Power system and component diagrams

'������ �*���
�����
�����
�	������

#-1

This subdirectory Contains this type of diagram
\PROCESS Process control diagrams

\SIG_PROC Signal processing diagrams

\STATCHRT Logic diagrams and state machines

'��	������3�	������������?K�
��
:�7K'))/B':)8K'/94�)'�@

Block diagram Description

6DOF.VSM Six degree of freedom simulation

'����
�	��3�	������������?K�
��
:�7K'))/B':)8K'H
:'�/@

Block diagram Description

2LINK.VSM Loose model of a two-link pendulum

PHYSBE.VSM Physiological Simulation Benchmark Experiment that shows
the bloodflow in the human body

ROCKET.VSM Simulation of the trajectory of a ballistic missile

"�	���������3�	������������?K�
��
:�7K'))/B':)8K"
4)<M�@

Block diagram Description

BIOREACT.VSM Bio-reactor showing cell culture growth in a nutrient solution

PHYSBE.VSM Physiological Simulation Benchmark Experiment that shows
the bloodflow in the human body

"��������3�	������������?K�
��
:�7K'))/B':)8K"��
H/��@

Block diagram Description

CASHFLOW.VSM Track cash flow within a manufacturing organization

WAGECHAO.VSM Affect of changing interest rate on employment

'������ �*

�����
�����
�	������

#--

���������������������3�	������������?K�
��
:�7K'))/B':)8K�</:/H�@

Block diagram Description

AMMONAB.VSM Steady state absorption column where ammonia is recovered
from an ammonia-air gas mixture by absorption into water,
using a counter-current-packed column

BATCHD.VSM nth order homogeneous liquid phase reaction in a batch tank
reactor

BATEX.VSM Single solution batch extraction

BATSEQ.VSM Complex batch reaction sequence (can be used to study
various reaction kinetics of interest simply by varying the rate
constants)

BEAD.VSM Diffusion and reaction in a spherical bead

BSTILL.VSM Binary batch distillation column

CASTOR.VSM Batch decomposition of acetylated castor oil to drying oil

CHAOS.VSM Chaotic oscillatory behavior

CONSTILL.VSM Continuous binary distillation column

CSTR.VSM System of three continuous stirred tank reactors with first
order isothermal reaction

CSTRCOM.VSM Isothermal CSTR with complex reaction

DISRE.VSM Dynamic behavior of an non-ideal isothermal tubular reactor
to predict the variation of concentration with respect to both
axial distance along the reactor and flow time

DISRET.VSM Dispersion model of DISRE.VSM is extended for non-
isothermal reactions to include the dispersion of heat from a
first order reaction

DRY.VSM Drying of solids by diffusion

EQEX.VSM Simple equilibrium stage extractor

EXMULTI.VSM Continuous equilibrium multistage extractor

GPJIF.VSM Solution of partial differential equations

HEATEX.VSM Shell and tube heat exchanger

HMT.VSM Semi-batch manufacture of hexamethylenetriamine.

HOPFBIF.VSM Hopf bifurcation

LORENZ.VSM Random differential equation behavior

MCSTILL.VSM Continuous multicomponent distillation column

'������ �*���
�����
�����
�	������

�77

Block diagram Description

NOSTR.VSM Non-ideal stirred tank reactor

ROD.VSM Radiation from metal rod

TANKBLD.VSM Liquid stream blending problem

TANKHYD.VSM Two interacting tank reservoirs

THERM.VSM First order, exothermic reaction in a continuous stirred-tank
reactor, equipped with jacket cooling

TUBE.VSM Tubular reactor, steady state design for an nth order reaction

TUBEMIX.VSM Non-ideal tube-tank mixing system

TUBTANK.VSM Comparison of steady state conversions for both continuous
tank and tubular reactors for nth order reaction kinetics

TWOTANK.VSM Two tank level control, where the level control of tank 2 is
based on the regulation of the inlet flow to the tank 1

�	�
�	���������3�	������������?K�
��
:�7K'))/B':)8K��98J*/�@

Block diagram Description

PIDTUNE.VSM PID control gain optimization

PLL_CTRL.VSM Phase-locked loop servo that models a simple controller

RL_DES.VSM Root locus design example

V_DERPOL.VSM Van der Pol’s nonlinear dynamical system

*������������
����3�	������������?K�
��
:�7K'))/B':)8K*MHJ�M�@

Block diagram Description

BOUNCE.VSM Bouncing ball and the dynamic exchange of data

CORNU.VSM Cornu's spiral

LORENZ.VSM Chaotic system based on the Lorenz attractor

MANUFACT.VSM Manufacturing and product distribution organization

METER.VSM Illustrates uses of the meter block

RAYLEIGH.VSM Rayleigh equation for bubble growth in super heated liquids

ROCKET.VSM Rocket dynamics

SOMBRERO.VSM Parameter sweep for Sombrero function

SPRING.VSM Simple, second-order, damped harmonic system

STUKBLOK.VSM Motion with static coulomb stiction

'������ �*

�����
�����
�	������

�7!

/���
�	������������3�	������������?K�
��
:�7K'))/B':)8K/8/��94@

Block diagram Description

ACMOTOR.VSM Three-phase AC motor system that plots motor speed and
torque against time

DCMOTOR.VSM GAE 12 amp micro-torque motor response curve under mild
loading conditions

DOORSYS.VSM Digitally controlled electro-mechanical door system

FLEXLOAD.VSM Response of a DC motor and gearbox with deadband to a
flexible load

FW_RECT.VSM Full wave rectifier test case

SM_1PH.VSM Stepper motor system

/�&��	����
���3�	������������?K�
��
:�7K'))8/B':)8K/H�
94H@

Block diagram Description

BIOREACT.VSM Bio-reactor showing cell culture growth in a nutrient solution

ROOMCTRL.VSM HVAC model of a single-room cooling system with on/off
thermostat

6� ����	��
�*�)�3�	������������?K�
��
:�7K'))8/B':)8K6
B)�*�)@

Block diagram Description

FILTDESN.VSM Unit delay filter implementation

SCALE.VSM Simulation of numerical overflow in fixed-point DSP

:�������������
��2����3�	������������?K�
��
:�7K::
@

Block diagram Description

MORE_PLT.VSM Moore control panel

PIDPLATE.VSM PID control panel

:	
�	���	�
�	��3�	������������?K�
��
:�7K:4�
4H@

Block diagram Description

PACDEMO.VSM Pacific Scientific motion control demo

QUADCODE.VSM Quadrature encoding

'������ �*���
�����
�����
�	������

�7#

4�
���5�
�	��3�	������������?K�
��
:�7K'))/B':)8K4)�
:
>/@

Block diagram Description

2POINT.VSM Classic two-point value problem using cost and
�����
�
�������� blocks

LC_FIND.VSM Illustrates the use of
��������� and ������� blocks to
determine initial conditions of integrators

PIDTUNEZ.VSM Optimization of a second order plant with a first order
controller using
��� and �����
�
�������� blocks

ROOTS.VSM Illustrates the use of
��������� and ������� blocks to find
one of the roots of a quadratic equation

)	,���3�	������������?K�
��
:�7K'))/B':)8K)4$/9@ ��
Block diagram Description

INVERTER.VSM Inverter

PSV_TRBN.VSM Gas turbine simulation

)�	������	�
�	��3�	������������?K�
��
:�7K'))/B':)8K)94�/��@

Block diagram Description

CSTRS.VSM Simulation of a set of three isothermal continuous stirred tank
reactors in a series

POWPLANT.VSM Power plant simulation

ROOMCTRL.VSM Room temperature controller

VALVE.VSM Simulates a mechanical valve with finite actuation time

'������ �*

�����
�����
�	������

�7�

���������	��������3�	������������?K�
��
:�7K'))/B':)8K�
�J)94�@

Block diagram Description

ANL_PLL.VSM Analog phase-locked loop system

DIG_PLL.VSM Digital phase-locked loop system

FILTTEST.VSM Illustrates filter design capabilities

F_SERIES.VSM Fourier series problem

PWM_EX.VSM Pulse width modulation of a sinusoidal signal

8	������������������
�
�����������?K�
��
:�7K'))/B':)8K��'��<9�@

Block diagram Description

LOG_EX1.VSM Counter and reset counter implementation

LOGICBLK.VSM Logic and timing blocks

ONESHOT.VSM Simulation of a “one shot”

PIDPAPER.VSM PID controller logical simulation

STATEM1.VSM State machine demo

�7%

'������ �/

$	������,�
��"�
����

Pictures, or graphical images, can be configured on many VisSim blocks to enhance
the visual representation of a block diagram. They can also be used to create
animated simulations.

VisSim provides a Bitmap library containing a wide range of motion and process
control pictures. The library is installed in \VISSIM30\BITMAPS\DIAGRAM. If the
library does not contain a picture you need, you can always create one using any of
the numerous drawing and icon creation packages that run under Windows. When
you create pictures, follow these simple guidelines:

• Save the pictures in .BMP file format

• To avoid screen clutter, create pictures no larger than ¾" by ¾"

'������ �/�������	��
�	�&
�	�����

�7+

3D-BUT1.BMP 3D-BUT2.BMP B-PIPEO1.BMP B-PIPE02.BMP B-PIPE03.BMP

B-PIPE04.BMP B-PIPE05.BMP B-PIPE06.BMP B-PIPE07.BMP B-PIPE08.BMP

B-PIPE09.BMP B-PIPE10.BMP B-PIPE11.BMP BAIL-00.BMP BAIL-01.BMP

BAIL-02.BMP BAIL-O3.BMP BAIL-04.BMP BAIL-05.BMP BAIL-O6.BMP

BAIL-07.BMP BAIL-08.BMP BAIL-L00.BMP BAIL-L01.BMP BAIL-L02.BMP

BAIL-PAN.BMP BFLY.BMP BLU-TANK.BMP CAR.BMP CART-1.BMP

CART-2.BMP CART-3.BMP CART-4.BMP CART-5.BMP CHAS-A.BMP

CHAS-B.BMP CHASI.BMP CLRDGN.BMP CO-AXIAL.BMP COMPRESS.BMP

'������ �/

����	��
�	�&
�	�����

�7.

COOLCOIL.BMP DANGER.BMP DISH-R.BMP DISH.BMP DOOR1.BMP

DOOR2.BMP DOOR3.BMP EAR.BMP EVAP.BMP FAIL.BMP

FIBEROPT.BMP FILNOTCH.BMP FILTR_BP.BMP FILTR_HP.BMP FILTR_LP.BMP

FUZZY.BMP GAUGE.BMP GEARS-A.BMP GEARS-B.BMP GEARS-C.BMP

GEARS-D.BMP GEARS-E.BMP GEARS-F.BMP GEARS-G.BMP GEARS-H.BMP

GEARS-I.BMP GRN-TANK.BMP HEART-A.BMP HEART-B.BMP HEART-C.BMP

HEATCOIL.BMP HIGHWIRE.BMP HORN1.BMP HORN2.BMP MIXER.BMP

'������ �/�������	��
�	�&
�	�����

�71

MOORE-00.BMP MOORE-01.BMP MOORE-02.BMP MOORE-03.BMP MOORE-04.BMP

MOORE-05.BMP MORE-L01.BMP MORE-L02.BMP MORE-M-P.BMP MORE-M-S.BMP

MORE-M-V.BMP MORE-M-X.BMP MORE-M-Y.BMP MORE-M00.BMP MORE-PAN.BMP

MORE-SWT.BMP MORE-U00.BMP MORE-U01.BMP MORE-U02.BMP MORE-U03.BMP

MORE-U04.BMP MORE-U05.BMP MORE-U06.BMP MORE-U07.BMP MORE-U08.BMP

MORE-U09.BMP NNET.BMP NORM.BMP P_CTL_BW.BMP P_CTL.BMP

PANEL-BG.BMP PANEL.BMP PASS.BMP PLC_BW.BMP PI_CTL.BMP

'������ �/

����	��
�	�&
�	�����

�7-

PIC_C-BW.BMP PIC_CTL.BMP PUMP-LQD.BMP PUMP.BMP Q.BMP

R-ARM.BMP RECTIFI.BMP RED-TANK.BMP ROCKT-1.BMP ROCKT-10.BMP

ROCKT-11.BMP ROCKT-12.BMP ROCKT-A1.BMP ROCKT-2.BMP ROCKT-2A.BMP

ROCKT-3.BMP ROCKT-3A.BMP ROCKT-4.BMP ROCKT-4A.BMP ROCKT-4B.BMP

ROCKT-5.BMP ROCKT-5A.BMP ROCKT-6.BMP ROCKT-6A.BMP ROCKT-6B.BMP

'������ �/�������	��
�	�&
�	�����

�!7

ROCKT-7.BMP ROCKT-7A.BMP ROCKT-78.BMP ROCKT-7C.BMP ROCKT-8.BMP

ROCKT-8A.BMP ROCKT-9.BMP ROCKT-9A.BMP ROCKT-SD.BMP ROCKT10A.BMP

ROCKT11A.BMP ROCKT12A.BMP S-PIPE01.BMP S-PIPE02.BMP

S-PIPE03.BMP S-PIPE04.BMP S-PIPE05.BMP S-PIPE06.BMP S-PIPE07.BMP

S-PIPE08.BMP S-PIPE09.BMP S-PIPE10.BMP S-PIPE11.BMP SAT.BMP

SD-AUTO.BMP SD-MAN.BMP SENSOR-H.BMP SENSOR-L.BMP SENSOR.BMP

SERVER.BMP SHUTDWN0.BMP SHUTDWN2.BMP SLIDER-1.BMP SLIDER-2.BMP

'������ �/

����	��
�	�&
�	�����

�!!

SLIDER-3.BMP SLIDER-4.BMP SW-AUTO.BMP SW-IND1.BMP SW-IND2.BMP

SW-LON.BMP SW-MAN.BMP SW-TOGG1.BMP SW-TOGG2.BMP TANK-BEZ.BMP

TANK-SM.BMP TELEPOLE.BMP THERM-BG.BMP TIRE-ONL.BMP TIRE.BMP

TIRE1.BMP TIRE2.BMP TRANS-M.BMP TRANS.BMP VALVE-H.BMP

VALVE.BMP VAT.BMP VENT.BMP

�!�

'������ �6

����������,��

VisSim Viewer is a run-time version of VisSim that allows you to distribute your
block diagram models to end users not licensed to use VisSim. VisSim Viewer
provides end users with all the features and capabilities of VisSim, with the
following exceptions:

• It will not let end users create new block diagrams

• It will not let end users add, delete, or reposition block, or change wiring paths
in the diagrams they view

*��
��3�
��������������,��������	���3�	������������
	����������
As a licensed user of Professional VisSim, you are granted a royalty-free right to
reproduce and distribute up to 100 copies of VisSim Viewer, as described under the
terms of the VisSim Viewer Distribution License Agreement, at the end of this
appendix. Please take a minute to review this agreement.

� To distribute VisSim Viewer

1. Copy VSVIEWER.EXE from your VisSim main directory to another disk.

2. Copy your diagram files to the copied VisSim Viewer disk or another disk.

3. Include printed copies of the following sections of this appendix with the
VisSim Viewer: “VisSim Viewer documentation,” “Installing and starting
VisSim Viewer,” and “VisSim Viewer End User License Agreement.”

����������,����	�����
�
�	�
The VisSim Viewer User’s Guide has been formatted as a Microsoft Write file
named VIEWER.WRI and is included on the VisSim Viewer disk. End users should

'������ �6����	�
	�
�	����

�!(

make a printed copy of this file as soon as they install VisSim Viewer on their
computers. VIEWER.WRI contains information on:

• Installing, starting, and quitting VisSim Viewer

• Basic windowing techniques

• Using online help

It also provides tutorial lessons that cover:

• Loading, viewing, simulating, and optimizing a block diagram

• Observing simulation results using plot and stripChart blocks

• Printing block diagrams, plots, and strip charts

• Copying block diagrams to other applications

• Saving files

��
������������
��
��������������,��
Before installing VisSim Viewer, end users should check that their computers meet
the following minimum configuration:

• Microsoft Windows version 3.1 or higher

• EGA or higher resolution monitor

• At least 1 MB hard disk space

• At least 1 MB RAM with 256K configured as extended memory

� To install VisSim Viewer

1. Start Windows.

2. Insert the VisSim Viewer disk into the floppy drive.

3. Do one of the following:

For this platform Do this

Windows 95 or Windows NT Select Start and choose the Run command.

Windows 3.1 Select File from the Program Manager menu
bar and choose the Run command.

4. In the Command Line box, type a:install or b:install, and click on OK.

At the completion of the installation, Install builds a VisSim group window with a
VisSim Viewer icon inside it. To start VisSim Viewer, double-click on the VisSim
Viewer icon.

'������ �6

�	�
	�
�	����

�!%

����������,���/��������8�������'�������

This is a legal agreement between you, the end user, and Visual Solutions, Incorporated
("VSI"). BY OPENING THIS SEALED DISK PACKAGE AND USING THE SOFTWARE,
YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN
THE UNOPENED DISK PACKAGE AND THE ACCOMPANYING ITEMS TO THE
PLACE YOU OBTAINED THEM FOR A FULL REFUND. THIS AGREEMENT IS
SEPARATE FROM ANY AGREEMENT BETWEEN YOU AND THE SUPPLIER OF ANY
ACCOMPANYING .VSM OR OTHER FILES.
1. OWNERSHIP OF THE SOFTWARE. The enclosed VSI software program ("SOFTWARE") and the
accompanying written materials are owned by VSI or its suppliers and are protected by United States copyright laws and
international treaty provisions and all other applicable national laws. Therefore, you must treat the SOFTWARE like any
other copyrighted material (e.g., a book or musical recording) except that if the SOFTWARE is not copy protected, you
may either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the
SOFTWARE to a single hard disk, provided you keep the original solely for backup or archival purposes. You may not
copy the written materials accompanying the SOFTWARE.
2. GRANT OF LICENSE. VSI grants to you the right to use one copy of the enclosed SOFTWARE on a single
computer. The SOFTWARE is in "use" on a computer when it is loaded into temporary memory (i.e., RAM) or installed
into permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that computer. You may network the
SOFTWARE, provided you have a separate license for each computer at which the SOFTWARE is used.
3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and
accompanying written materials on a permanent basis, provided you retain no copies and the recipient agrees to the
terms of this Agreement. You may not reverse engineer, decompile, or disassemble the SOFTWARE. If the
SOFTWARE is an update or has been updated, any transfer must include the update and all prior versions.
4. LIMITED WARRANTY. VSI warrants that the SOFTWARE will perform substantially in accordance with the
accompanying written materials for a period of 90 days from the date of your receipt of the SOFTWARE. Any implied
warranties on the SOFTWARE are limited to 90 days. Some states do not allow limitations on duration of an implied
warranty, so the above limitation may not apply to you. VSI makes no warranties concerning .VSM files or other
software supplied by other companies.
5. CUSTOMER REMEDIES VSI’S ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT
VSI’S CHOICE, EITHER (A) RETURN OF THE PRICE PAID OR (B) REPLACEMENT OF THE SOFTWARE THAT
DOES NOT MEET VSI’S LIMITED WARRANTY AND WHICH IS RETURNED TO VSI WITH A COPY OF YOUR
RECEIPT. Any replacement SOFTWARE will be warranted for the remainder of the original warranty period or 30
days, whichever is longer. These remedies are not available outside the United States of America.
6. NO OTHER WARRANTIES VSI DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, WITH RESPECT TO THE SOFTWARE AND THE
ACCOMPANYING WRITTEN MATERIALS. This limited warranty gives you specific legal rights. You may have
others, which vary from state to state.
7. This Limited Warranty is void if failure of the SOFTWARE has resulted from modification, accident, abuse, or
misapplication.
8. NO LIABILITY FOR CONSEQUENTIAL DAMAGES IN NO EVENT SHALL VSI OR ITS SUPPLIERS BE
LIABLE FOR ANY OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS VSI PRODUCT,
EVEN IF VSI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, VSI’S ENTIRE
LIABILITY UNDER ANY PROVISION OF THIS AGREEMENT SHALL BE LIMITED TO THE AMOUNT
ACTUALLY PAID BY YOU FOR THIS SOFTWARE. Because some states do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitations may not apply to you.
9. This Agreement is governed by the laws of the State of Massachusetts, U.S.A.
10. Should you have any questions concerning this Agreement, or if you desire to contact VSI for any reason, please
write: Visual Solutions, Inc., 487 Groton Rd., Westford, Massachusetts 01886.
11. U.S. GOVERNMENT RESTRICTED RIGHTS The SOFTWARE and accompanying written materials are
provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data And Computer Software clause at 52.227-7013.
Contractor/manufacturer is Visual Solutions, Inc./487 Groton Rd./Westford, MA 01886.

'������ �6����	�
	�
�	����

�!+

����������,���*��
��3�
�	��'�������

This is a legal agreement between you, a licensed owner of Professional VisSim or
the VisSim Viewer software package and Visual Solutions. Visual Solutions grants
you a royalty-free right to reproduce and distribute 100 copies of VisSim Viewer
provided that you: (a) distribute VisSim Viewer only in conjunction with and as a
part of your block diagram(s); (b) do not require the use of VisSim companion
products (See “Additional Grant of License”); (c) do not use Visual Solutions’ name,
logo, or trademarks to market your block diagram(s); (d) legally acknowledge Visual
Solutions’ copyrights and trademarks where applicable; and (e) agree to indemnify,
hold harmless, and defend Visual Solutions and its suppliers from and against any
claims or lawsuits, including attorney fees that arise or result from the use or
distribution of your block diagram(s).

Additional Grant of License: If, to use your block diagram(s), VisSim Viewer end
users require the use of one or more VisSim companion products, call your Visual
Solutions Sales Representative for product re-sale terms and restrictions.

�!.

���

!= (not equal to) block, 152
$firstPass variable, 132
$lastPass variable, 132
$runCount variable, 132
$timeStart, 132
$timeStep variable, 132
$timeStop, 132
* (multiply) block, 142
/ (divide) block, 145
< block, 147
<= block, 148
== (equal to) block, 149
> block, 153
>= block, 155
1/S block, 192, 202, 231
1/X (inverse) block, 156
1/Z block (unitDelay), 51, 52, 257

A
abs block, 157
acos block, 159
adaptive Bulirsh-Stoer algorithm, 38
adaptive Runge Kutta 5th algorithm, 38
Add (File), 128
Add Connector (Edit), 22
add menu item function, 286
adding block diagrams, 128
aerospace block diagrams, 298
alarms, audio and visual, 199
algebraic loops, 58, 84
aligning blocks, 29
analog filter prototypes, 101–2
and block, 160
animate block, 161

applying pictures, 79
creating animation, 79
example, 77

animation, 77–82
faceplates, 165
hit testing, 168

animation block diagrams, 298

Animation blocks
animate, 78–81, 161
lineDraw, 81–82, 205

Annotation blocks
bezel, 165
comment, 172
date, 178
index, 190
label, 198
scalarToVec, 237
variable, 128–32, 260
vecToScalar, 260
wirePositioner, 261

Arithmetic blocks
* (multiply), 142
/ (divide), 145
1/X (inverse), 156
abs, 157
convert, 173
gain, 186
pow, 224
sign, 238
summingJunction, 245
unitConversion, 256
-X (negate), 143

arithmetic expressions, entering, 18
asin block, 161
atan2 block, 162
auto-panning, 4

B
backward Euler (Stiff) algorithm, 38
band specifications, 105
bar graphs, 75–77
bessel block, 163
Bessel filters, 101, 102
bezel block, 165
biophysical block diagrams, 298
bitmap library, 305
block diagrams

adding, 128
aerospace, 298
animation, 298
annotating, 172, 178, 198
biophysical, 298

����*

�!1

block diagrams (continued)
business, 298
chemical engineering, 299
control design, 300
copying to other applications, 29
creating, 7
DSP, 301
dynamical systems, 300
electro-mechanical, 301
embedding, 127
environmental, 301
logic, 303
motion, 301
opening, 10
optimization, 302
power, 302
previewing, 11
printing, 11–13
process control, 302
protecting, 135–36
samples, 298–301
saving, 11
setting up, 7
signal processing, 303
state machines, 303
statistics, 134
viewing, 266

Block Labels (View), 267
block level functions

userBlock(), 279
userBlockEvent(), 280
userBlockPA(), 283
userBlockPC(), 283
userBlockPI(), 283
userBlockSE(), 283
userBlockSS(), 283

block properties
arithmetic expressions, 18
C expressions, 18
numeric data, 18
precision control, 18–19
setting up, 17–18

Block Properties (Edit), 17

blocks
!= (not equal to), 152
* (multiply), 142
/ (divide), 145
<, 147
<=, 148
== (equal to), 149
>, 153
>=, 155
1/X (inverse), 156
abs, 157
acos, 159
aligning, 29
and, 160
animate, 78–81, 161
asin, 161
atan2, 162
bessel, 163
bezel, 165
buffer, 166
button, 168
case, 169
changing text attributes, 267
comment, 172
compound, 123
connector tabs. See connector tabs
const, 172
constraint, 83, 173
convert, 173
copying, 26–29
cos, 173
cosh, 174
cost, 89, 174
crossDetect, 175
custom, 16
date, 178
DDE, 119–22, 178
DDEreceive, 115–17, 178
DDEsend, 117–19, 178
deadband, 179
deleting, 32
derivative, 179
display, 180
dotProduct, 181
embed, 127, 138, 181

����*

�!-

blocks (continued)
error, 181
exp, 182
export, 111–14, 182
expression, 182
extensibility, 260, 275–88
fft, 184
finding, 30–32
flipping, 29
gain, 186
gaussian, 188
globalConstraint, 188
histogram, 73–75, 188
ifft, 189
import, 109–12, 190
index, 190
inserting, 15
int, 192
integrator, 51
integrator (1/S), 192
invert, 198
label, 198
light, 199
limit, 201
limitedIntegrator (1/S), 202
lineDraw, 81–82, 205
ln, 206
log10, 205
map, 206
max, 215
merge, 217
meter, 75–77, 218
min, 218
moving, 26–29
multiply, 220
neuralNet, 221
not, 221
or, 222
parabola, 223
parameterUnknown, 89, 224
plot, 59–67, 224
pow, 224
PRBS, 226
properties. See block properties
pulseTrain, 226

blocks (continued)
quantize, 227
ramp, 229
realTime, 229
relay, 230
replacing, 30–32
resetIntegrator (1/S), 231
rt-DataIn, 234
rt-DataOut, 234
sampleHold, 235
scalarToVec, 237
selecting, 25
setting up. See block properties
sign, 238
sin, 239
sinh, 240
sinusoid, 240
slider, 241
sqrt, 242
stateSpace, 51, 54, 242
step, 244
stop, 244
stripChart, 67–73, 245
summingJunction, 245
tan, 247
tanh, 248
timeDelay, 249
transferFunction, 48, 51, 54, 99, 100
transferFunction, 252
transpose, 255
types, 16
uniform, 256
unitConversion, 256
unitDelay, 98
unitDelay (1/Z), 51, 52, 257
unknown, 83, 259
userFunction, 260, 275–88
user-written, 260, 275–88
variable, 260
vecToScalar, 260
vsum, 261
wirePositioner, 261
wiring. See wiring blocks
-X (negate), 143
xor, 261

����*

�#7

Blocks menu. See also individual blocks
adding blocks to, 288

Boolean blocks
!=, 152
<, 147
<=, 148
==, 149
>, 153
>=, 155
and, 160
not, 221
or, 222
xor, 261

buffer block, 166
built-in variables, 132
business block diagrams, 298
Butterworth filters, 101, 102
button block, 168

C
C expressions, entering, 18
case block, 169
Chebyshev filters, 101, 102
check boxes, 6
checkpointing simulations, 39
checkpointing system states, 193, 203, 232, 257,

280
chemical engineering block diagrams, 299
choosing commands, 4
Clear (Edit), 32
Clear Errors (Edit), 57
Close button, 2
closed-loop system, 45–48
coloring

plotting background, 267
screen display, 267
text, 267
window, 267
wires, 267

Colors (View), 21, 267
command buttons, 6
comment block, 172

retaining character format, 267
component libraries

DSP, 292

component libraries (continued)
dynamical systems, 292
electrical systems, 292
electro-mechanical systems, 292
hydraulic systems, 293–94
process control, 295
thermal control, 295
turbine, 295

compound blocks
basics, 133
coloring, 267
configuring pictures on, 125
connector labels, 126, 267
connector tabs, 124
containing global variables, 131
creating, 124, 127
dissolving, 126
drilling, 124
embedding, 127
hiding, 125
protecting, 136–37
selecting, 25

Connector Labels (View), 126, 267
connector tabs, 19

adding and removing, 22, 280
coloring, 266
connection class, 23
in display mode, 24
in presentation mode, 24
labels, 126, 267
manipulating, 22
on compound blocks, 124
probing, 56
restricting access, 24
symbols, 22, 24
unconnected inputs, 23

const block, 172
constraint block, 83, 173, 174
Continue (Simulate), 55
continuous simulations, 44–51

spring-damper arm, 45–48
spring-damper arm with external force

example, 50–51
continuous time transfer function, 48–49, 50–51
control design block diagrams, 300

����*

�#!

Control Panel, 54
Control Panel (View), 55
controls toolbox functions, 289
convert block, 173
Copy (Edit), 28
copying

block diagrams, 29
character formatting, 267

copying blocks
drap-and-drop editing, 27
rules, 27
with Clipboard, 28

cos block, 173
cosh block, 174
cost block, 89
cost function, 89
Create Compound Block (Edit), 124, 127
crossDetect block, 175
Cut (Edit), 28
cutting and pasting blocks

rules, 27
with Clipboard, 28
with drag-and-drop, 27

D
data I/O, 182
Data Types (View), 266
date block, 178
.DAT files, exporting, 182
DDE

creating links, 114
editing a link address, 122
linking from another app, 115–17
linking to another app, 117–19
two-way links, 119–22

DDE block, 119–22, 178
DDE blocks

DDE, 119–22, 178
DDEreceive, 115–17, 178
DDEsend, 117–19, 178

DDEreceive block, 115–17, 178
DDEsend block, 117–19, 178
deadband block, 179
definition and below scope, 130, 131
degMsg(), 286

deleting blocks, 32
derivative block, 179
Diagram Information (File), 134, 135
diagram scope, 130, 131
diagram tree

expand and collapse, 4
jump to location, 4
resizing, 4

dialog boxes, 6–7
missing, 5

difference equations, 52
differential equations, 45–48

converting to integration, 44
differentiators, 104
digital filters. See filter design
discrete MIMO systems, 52
discrete time simulations, 51–53

entering difference equations, 52
multi-rate, 52

display block, 180
display boxes, 7
Display Mode (View), 22, 266
Dissolve Compound Block (Edit), 126
divide (/) block, 145
DLL functions, 260

adding to Blocks menu, 288
building with Project Build, 276
calling, 287
criteria, 276
debugging, 287
VisSim calling conventions, 277

dotProduct block, 181
drop-down list boxes, 6
DSP block diagrams, 301
DSP components, 292
Dynamic Link Library functions. See DLL

functions
dynamical system components, 292
dynamical systems block diagrams, 300

E
electrical system components, 292
electro-mechanical block diagrams, 301
electro-mechanical system components, 292
electro-mechanical toolbox functions, 290

����*

�##

embed block, 127, 181
editing, 128
protecting, 138–39
reconnecting, 128

environmental block diagrams, 301
equal to (==) block, 149
error block, 181
error conditions, 57, 181
error conditions, resetting, 57, 181
Euler algorithm, 37
event handler function, 280
Exit (File), 13
exp block, 182
export block, 111–14, 182
exported functions

debMsg(), 286
getSimTime(), 286
getSimTimeStep(), 286
setBlockErr(), 286
setUserBlockMenu(), 286
stopSimulation(), 286
vissimRequest(), 284

expression block, 182
extending the block set, 260, 275–88

F
feedback loops, 58, 84
fft block, 184
FFT plots, 62
FFT strip charts, 69
fields, 9
filter design

comparison, 100
FIR, 104–7
frequency domain, 99
IIR, 99, 100–103
operations, 98
time domain, 98–99
with transferFunction block, 100–107

Find (Edit), 30–31
Match Variable Definitions Only, 132

finding blocks, 30–31
FIR filters, 100, 104–7

band specifications, 105
continuous, 104

FIR filters (continued)
discrete, 104
generating, 106
order, 105
tapped delay implementation, 105

flag error function, 286
Fletcher Reeves global optimizer, 91
flexWires. See wiring blocks

unbundling, 260
Flip Horizontal (Edit), 29
Fonts (View), 267
footers, 8
frequency domain filters, 99
frequency domain plots, 62
frequency domain strip charts, 69

G
gain block, 186
gauges, 75–77
gaussian block, 188
general information function, 284
get current simulation time function, 286
get current simulation time step function, 286
getSimTime(), 286
getSimTimeStep(), 286
global optimization

avoiding system instability, 96
example, 91
tips, 96

global optimizers
building, 273
Fletcher Reeves, 91
Polak-Ribiere, 91
Powell, 91
source files, 268
vissimRequest function, 271

global variables, 131
globalConstraint block, 188
Go (Simulate), 55
greater than (>) block, 153
greater than or equal to (>=) block, 155
grids, snapping to, 29

����*

�#�

H
headers, 8
Hilbert transfromers, 104
histogram block, 73–75, 188

sizing, 74
hybrid simulations, 54
hydraulic system components, 293–94

I
ifft block, 189
IIR filters, 99, 100–103

analog filter method, 101
attenuation frequencies, 102
attenuation levels, 102
band pass specification, 102
Bessel, 101, 102
Butterworth, 101, 102
Chebyshev, 101, 102
cut-off frequencies, 102
generating, 103
Inverse Chebyshev, 101, 102

implicit equations
convergence warnings, 85
diagrams including, 302
feedback loops, 84
setting up, 83
solving, 84

implicit solver
building with nmake, 270
error tolerance, 85
maximum iteration count, 85
Newton-Raphson, 85
perturbation, 85
relaxation, 85
source files, 268
user-defined, 85
vissimRequest function, 268–69

import block, 109–12, 190
importing data

map block, 206
transferFunction block, 252
with stateSpace block, 242

index block, 190

initial conditions, 17, 193, 203, 223, 235, 29, 232,
240, 249, 257

initialization function, 278
inserting blocks, 15
int block, 192
integration algorithms

adaptive Bulirsh-Stoer, 38
adaptive Runge Kutta 5th order, 38
backward Euler (Stiff), 38
choosing, 36–38
Euler, 37
input functions, 58
integrator block, 192
iteration count, 38
limitedIntegrator block, 202
resetIntegrator block, 231
Runge Kutta 2d order, 37
Runge Kutta 4th order, 38
selecting, 35
step sizes, 35, 38
trapezoidal, 37
truncation errors, 38
unstable settings, 58

Integration blocks, 44
integrator, 192
limitedIntegrator, 202
resetIntegrator, 231

integrator (1/S) block, 51, 192
inverse (1/X) block, 156
inverse Chebyshev filters, 101, 102
invert block, 198

L
label block, 198
landscape paper orientation, 8
less than (<) block, 147
less than or equal to (<=) block, 148
level scope, 130, 131
light block, 199
limit block, 201
limitedIntegrator (1/S) block, 202
Linear System blocks

stateSpace, 242
transferFunction, 48, 100, 252

linearization, 242, 252

����*

�#(

linearization data
.M file, 242, 252
.MAT file, 243, 252

lineDraw block, 81–82, 205
ln block, 206
local variables, 131
log10 block, 205
logic diagrams, 303

M
map block, 206
.MAT files

exporting, 182
importing, 243, 252

MatLab
exporting data to, 182
importing data from, 243, 252

Matrix Operation blocks
buffer, 166
dotProduct, 181
fft, 184
ifft, 189
invert, 198
multiply, 220
transpose, 255
vsum, 261

max block, 215
Maximize button, 2
menu bar, 2
merge block, 217
meter block, 218

coloring, 267
properties, 76–77
sizing, 75
types, 75

.M files
exporting, 182
importing, 242, 252

min block, 218
Minimize button, 2
MMI

audio and visual alarms, 199
multiple bitmap animation, 199

motion control block diagrams, 301

moving blocks
drag-and-drop, 27
rules, 27
with Clipboard, 28

multiply (*) block, 142
multiply (matrix) block, 220
multi-rate simulations, 52

N
negate (-X) block, 143
neuralNet block, 221
New (File), 7–9
Newton-Raphson solver, 85
noise

random, 188
uniform, 256

Nonlinear blocks
case, 169
crossDetect, 175
deadband, 179
int, 192
limit, 201
map, 206
max, 215
merge, 217
min, 218
quantize, 227
relay, 230
sampleHold, 235

not block, 221
not equal to (!=) block, 152

O
Open (File), 10
opening

a new diagram, 7–9
an existing diagram, 10
fast opening, 10
read-only access, 10

optimization. See global optimization; implicit
equations; implicit solver; Optimization
Properties (Simulate)

optimization block diagrams, 302

����*

�#%

Optimization blocks
constraint, 83, 173
cost, 174
globalConstraint, 188
parameterUnknown, 224
unknown, 83, 259

Optimization Properties (Simulate), 90
or block, 222

P
Pade approximations toolbox functions, 290
page setup

fields, 9
fit to page, 8
headers and footers, 8
margins, 8
orientation, 8, 13
paper size, 8
paper source, 8
tiling, 8
with Print command, 12

Page Setup (File), 7
panning, 4
parabola block, 223
parameter allocation function, 283
parameter change function, 283
parameter initialization function, 283
parameters. See also block properties
parameterUnknown block, 89, 224
passwords, 134
Paste (Edit), 28
Paste Link (Edit), 115
Paste Link (Edit), 119
path alias, 132

creating, 132
inserting, 133

plot block, 224
coloring, 267
sizing, 60
zooming, 61

plot properties
appearance, 67
axis divisions, 67
axis labels, 66
data points, 64

plot properties (continued)
decibel Y, 65
external trigger, 63
FFT, 62
fixed bounds, 62, 66
geometric markers, 63
grid lines, 65
line types, 64, 70
log plots, 64
max data points, 64
multi XY traces, 64
overplotting, 62
reading coordinates, 65
retracing, 67
signal labels, 66
time domain, 60
time scaling, 66
titles and subtitles, 66
truncating FFT data, 62
XY plots, 63

Polak-Ribiere global optimizer, 91
portrait paper orientation, 8
pow block, 224
Powell global optimizer, 91
power block diagrams, 302
PRBS block, 226
Preferences (Edit)

Addons, 288
Path Aliases, 132
Preferences

Auto Connect Radius, 21
Color Compound Block, 267
Color Display, 267
High Precision Display, 18–19
Show Horizontal Scroll Bar, 264
Show Vertical Scroll Bar, 264
Snap To Grid, 11, 29
Training Mode Labels, 267
Use Rich Text Format, 172, 267

presentation mode
activating, 266
affect on connector tabs, 24

Presentation Mode (View), 266
previewing block diagrams, 11

����*

�#+

Print (File)
All, 12
Copies, 12
Current Level, 12
Current Level and Below, 12
Fit to Page, 12
orientation, 13
paper size, 13
paper source, 13
Print to File, 12
printer, 12
Tile Pages, 12

print debug message function, 286
Print Preview (File), 11
printing, 11

fit to page, 8
landscape mode, 13
previewing, 11
strip charts, 68
tiling, 8

probing connector values, 56
process control block diagrams, 302
process control components, 295
protecting

block diagrams, 10, 135–36
compound blocks, 136–37
embedded block diagrams, 138–39

pulseTrain block, 226

Q
quantize block, 227

R
radio buttons, 7
ramp block, 229
Random Generator blocks

gaussian, 188
PRBS, 226
uniform, 256

random numbers, generating, 40
range control

setting, 33

Real Time blocks
rt-DataIn, 234
rt-DataOut, 234

Real Time Config (File), 234
realTime block, 229
real-time simulations, 35
relay block, 230
Remez Multiple Exchange algorithm, 104
Remove Connector (Edit), 22
Rename Block (Edit), 125
Repaint Screen (Edit), 10
Replace (Edit), 31
replacing blocks, 31
request simulation end function, 286
Reset (Simulate), 56
resetIntegrator (1/S) block, 231
right mouse button, 18
rt-DataIn block, 234
rt-DataOut block, 234
Runge Kutta 2d order algorithm, 37
Runge Kutta 4th order algorithm, 38

S
sampleHold block, 235
Save (File), 11
Save As (File), 11
saving block diagrams, 11
saving system states, 39, 57
scalarToVec block, 237
scoping, 130
screen, coloring, 267
scroll bars, 4
scrolling lists, 7
selecting blocks

area select, 26
canceling selections, 26
compound blocks, 25
individually, 25
toggle select, 26

setBlockErr(), 286
setUserBlockMenu(), 286
sign block, 238
signal, 303

����*

�#.

Signal Consumer
display, 180
error, 181
export, 111–14, 182
histogram, 73–75, 188
light, 199
meter, 75–77, 218
plot, 59–67, 224
stop, 244
stripChart, 67–73, 245

signal generation toolbox functions, 291
Signal Producer
Signal Producer blocks

button, 168
const, 172
import block, 109–12, 190
parabola, 223
pulseTrain, 226
ramp, 229
realTime, 229
sinusoid, 240
slider, 241
step, 244

simulation end function, 283
simulation level functions

vsmEvent(), 278
vsmInit(), 278

Simulation Properties (Simulate)
Defaults, 41
Integration Method

Adaptive Bulirsh-Stoer, 38
Adaptive Runge Kutta 5th order, 38
Backward Euler (Stiff), 38
Euler, 37
Max Iteration Count, 38
Max Truncation Error, 38
Min Step Size, 38
Runge Kutta 2nd order, 37
Runge Kutta 4th order, 38
Trapezoidal, 37

Preferences
Check Connections, 39
Checkpoint State, 39
Frequency Units, 39, 103
Notify Simulation End, 40

Preferences (continued)
Propagage Integer Types, 40
Raise Real-Time Priority, 40
Random Seed, 40
Warn Nonintegral Clock, 40
Warn Nonintegral Delay, 40
Warn Numeric Overflow, 40

Range
Auto Restart, 34
End, 35
Retain State, 34
Run in Real Time, 35
Start, 35
Step Size, 35

simulation start function, 283
simulations

animated, 199
auto restart, 34
basics, 43
checkpointing, 39
continuing, 55
continuous, 44–51
Control Panel, 54
default settings, 41
discrete, 51–53
dynamic execution, 56
end-of-sim message, 40
error conditions, 57
hybrid, 54
integration algorithms, 35–38
iterations, 38
multi-rate, 52
preferences, 38–40
raising process priority, 40
random numbers, 40
range control, 33
real-time, 35
resetting, 56
single-stepping, 56
snapping system states, 57
starting, 55
step sizes, 35, 38
stopping, 55, 244
trimming a system, 57
truncation errors, 38

����*

�#1

simulations (continued)
unconnected blocks, 58

sin block, 239
sinh block, 240
sinusoid block, 240
slider block, 241
Snap State (Simulate), 57
sound files

exporting, 182
playing, 182, 199

spring-damper arm example, 45–48
modified, 50–51

sqrt block, 242
starting VisSim, 1, 263
state machine diagrams, 303
stateSpace block, 51, 54, 242
state-space matrices, 242, 252
status bar, 3
step block, 244
step sizes, 35, 38
Stop (Simulate), 55
stop block, 244
stopSimulation(), 286
strip chart properties

appearance, 73
axis divisions, 72
axis labels, 71
decibel Y, 70
displayed time, 72
external trigger, 70
FFT, 69
fixed bounds, 69, 72
geometric markers, 69
grid lines, 70
Log Y, 70
max data points, 70
scroll back interval, 72
signal labels, 71
time domain, 68
 scaling, 72
titles and subtitles, 71

strip charts. See stripChart block
stripChart block, 67–73, 245

coloring, 267
printing, 68

stripChart block (continued)
properties. See strip chart properties
sizing, 68

summingJunction block, 245
system states

checkpointing, 39
retaining, 34
snapping, 57

system-wide event function, 278

T
tabs, 6
tan block, 247
tanh block, 248
text boxes, 6
thermal control components, 295
Time Delay blocks

timeDelay, 249
unitDelay (1/Z), 257

time domain filters
with transferFunction block, 99
with unitDelay block, 98

time domain plots, 60
time domain strip charts, 68
time step function, 279
timeDelay block, 249
title bar, 2
titles, block diagram, 10, 134
toolbar

dimmed buttons, 3
editng, 265
hiding, 264
moving, 2

Toolbar (Edit), 265–66
Toolbar (View), 2, 264
toolboxes

controls, 289
Electro-mechanical, 290
Pade approximations, 290
signal generation, 291
tools, 291

tools toolbox functions, 291
training mode labels, 267

����*

�#-

Transcendental blocks
acos, 159
asin, 161
atan2, 162
bessel, 163
cos, 173
cosh, 174
exp, 182
ln, 206
log10, 205
sin, 239
sinh, 240
sqrt, 242
tan, 247
tanh, 248

transfer functions, 50–51
continous time, 48–49
transferFunction block, 252
with polynomial constants, 48–49

transferFunction block, 48, 51, 54, 99, 100, 252
transpose block, 255
trapezoidal algorithm, 37
trimming a system, 57
turbine components, 295

U
Undo (Edit), 10
uniform block, 256
unitConversion block, 256
unitDelay block, 51, 52, 98, 257
unknown block, 83, 259
userBlock(), 279
userBlockEvent(), 280
userBlockPA(), 283
userBlockPC(), 283
userBlockPI(), 283
userBlockSE(), 283
userBlockSS(), 283
userFunction block, 260. See also DLL functions
user-written blocks, 260. See also DLL functions

V
variable block

built-in, 132

variable block (continued)
creating, 129
finding definitions, 132
scoping, 130
using, 129, 260

vector wires, 237, 260. See wiring blocks
vecToScalar block, 260
views

block labels, 267
diagram text, 267
display mode, 266
presentation mode, 266
screen display, 267
training mode labels, 267

VisSim
customizing, 13, 266
exiting, 13
starting, 1, 263

VisSim Viewer, 313–16
distributing, 313
distribution license agreement, 316
documentation, 313
end user license agreement, 315
installing, 314
starting, 314

vissimRequest function, 268–69, 271–72, 284
vsmEvent(), 278
vsmInit(), 278
VSOLVER.C, 271
VSOLVER.DEF, 271
VSOLVER.MAK, 271
vsum block, 261
VSUSER.H, 271

W
.WAV files

exporting, 182
playing, 182, 199

windows, color, 267
wirePositioner block, 21, 261
wires

bundling, 237
coloring, 267
positioning, 261

����*

��7

wiring blocks
auto-connect, 21
bundling flexWires, 20
colors, 21
creating, 20
deleting, 22
flexWires, 19
hiding, 22
positioning, 21
rules of use, 20
unbundling flexWires, 20
unconnected blocks, 58
vector wires, 19, 260
wireless blocks, 260

X
-X (negate) block, 143
xor block, 261
XY plots, 63

