VisSim

User's Guide



Visual Solutions, Inc.

VisSim User’s Guide - Version 3

Copyright

Trademarks

Copy and use restrictions

© 1998 Visua Solutions, Inc. Visual Solutions, Inc.
All rights reserved. 487 Groton Road
vug-30-04 Westford, MA 01886

VisSim and flexWires are trademarks of Visua Solutions. IBM, Personal
System/2, and PC AT are registered trademarks of International Business
Corp. MatLab is atrademark of The MathWorks, Inc. Microsoft, MS,
MS/DOS, Excel, Windows, Windows 95, and Windows NT are registered
trademarks of Microsoft Corp. NeuroWindow is atrademark of Ward
Systems Group, Inc. Other products mentioned in this manual are trademarks
or registered trademarks of their respective manufacturers.

The information in this manual is subject to change without notice and does
not represent a commitment by Visual Solutions. Visua Solutions does not
assume responsibility for errors that may appear in this document.

No part of this manua may be reprinted or reproduced or utilized in any form
or by any electronic, mechanical, or other means without permission in
writing from Visual Solutions. The Software may not be copied or
reproduced in any form, except as stated in the terms of the Software license
agreement.



Contents

Introduction....... ..o Xiii
Chapter 1 VisSim BasiCS........cccovveiniiiiiiii e 1
10 T TS S 1
EXploring the VIiSSIM WINAOW ........cciieieieece sttt eens 2
(015107015 T a0 070 1] 017=1 10 TS 4
(0T glo o [T= Lo o [ o0 )= PR 6
Creating and setting up anew block diagram .........cccceeieveienine e 7
Opening an existing blocK diagram..........cccceeeeiereie s 10
Undoing an editing aCtiON .........ccvieiirece e 10
REPAINTING thE SCIEEN .....c.eeceeeeecesese ettt e e sa e eesresrenns 10
Saving abloCK diagram.......c.eceeieeeese e nne 11
Previewing before Printing.........ccoocieeeee e 11
1011 S 11
Setting up the ViSSim enVIFONMENL.........cccoviriereiicere e see e seeneas 13
U1 0 AV =S S 13
Chapter 2 Inserting, Setting Up, and Wiring Blocks....................... 15
BIOCK DBSICS ...ttt ettt ettt b e ene s 15
TYPES Of DIOCKS.....cveieeciiceeee e s ene s 16
Identifying BIOCK PartS.......cccceoueieieiese e 16
1S T g To o o 17
Setting up block properties and initial conditions..........cccccecveeeeeeieierese e 17
ENtering NUMENC data........ccovevuereeriese e ciese ettt e 18
Entering arithmetiC EXPreSSiONS. .......ccveveeeiererese e 18
ENtering C EXPreESSIONS ......ccveierieriesie st steseeeeeesses e seesresse e esee s eaesaessessesnesrenss 18
Controlling the number of displayed significant decimal digits..........cc.ccevn.... 19
LAV g To 7= S =P 19
TYPES Of WITES....cueiie ettt s e et srenresnenneas 19
WITING TUIES ...ttt s e e sr e aesnenne s 20
Wiring bIOCKS tOGELNEN .......cveieecece e 20
Automatically completing CONNECLIONS..........ccceveieniiecieieeeere e 21
POSItIONING WITES.......eieiieie et eee e ste e st et e e e e e saesae st sresresneeneennenean 21
(00 [T 010 AV T (=S 21



Contents

[ T T AT =SS 22
D= LU a0 R =S 22
CONNECLOr ta DASICS ......veiieiiie e 22
Adding and removing CONNECLOr taS .......ccevvvererieire e 22
Unconnected input CONNECLOr tadS.........cccevvieveiecice e 23
Setting CONNECLION ClASSES.......ccveivieierieeiereeeee e e e et ee e s 23
Displaying connector tabsin adifferent VIiew ........ccccecevevevevvvce s, 24
Chapter 3 Arranging BIOCKS..........ccoevuiniiiiiiiiiii e,
SElECHING DIOCKS ...t s ene s 25
F N 7= = 1= oo ST 26
L0 To o | =TS = 1= 1] oo 26
UNSEl€Cting BIOCKS........coiiiiececeece s 26
Moving and Copying BIOCKS........cccvciiieeeee e 26
Rules for moving and copying blOCKS ... 27
Drag-and-drop €diting.........ccccoeveririenesiseeiese e 27
Copying, cutting, and pasting BIOCKS.........cccvevvvviie e 28
Copying blocks into other appliCations...........ccovveveeiriecieie e 29
FLIPPING DIOCKS. ... .ottt s er e e ens 29
Aligning blocks vertically and horizontally ... 29
Finding and replaCing BIOCKS ........ocviiiieieecee e e 30
FINAiNG BIOCKS.......coiie e s e 30
RePIACING DIOCKS.......oeeee e 31
(D= L U] o o] o 0 S 32
Chapter 4 Setting Simulation Properties.............cccccoeeeeenannin.
Setting Up the SIMUIELION FANGE.........ece e enea 33
Using the Range property Sheet ... 34
Setting up an integration MEthOd ..........cocvvieieiecere e e 35
Using the Integration Method property Sheet ........ccovveeevevevce s 36
Setting Up SIMUIELION PrEfEIENCES .....cvviieeeeeee e eenen 38
Using the Preferences property SNEEL........ccvvveveceve e 39
Setting SIMUIation dEfAUILS.........coeveie e ne 41
Chapter 5 Simulating Block Diagrams..............cccoceviiiiannnn.n.
SIMUIBETION DBSICS ...ttt eenes 43
ContinUOUS SyStEM SIMUIBLTION ......c.eeveieiee e 44
Discrete time system SIMUIatiON ........cccoiveieeeieerce e 51
Hybrid system SImUlation ...........ccooeveiecinieeeeesee e 54



Controlling @ SIMUIGLION. ........ccveieriee e e e e e tesresresnenneas 54
The Control Panel ... 54
Starting @SIMUIALION ......c..ooeeece e e 55
StopPING ASIMUIALTION ....c.eeviiece e e 55
ContinuING @ SIMUIBEION........ccviiieceieeeereses et se e enens 55
Single-stepping @ SIMUIBLION. ........ccveiieierce e 56
Resetting asimulation to initial conditions...........cccceevevvrieeceecerere e 56
More on controlling @ SIMUIGLION..........ccccvereierie e ere s 56
Dynamically modifying signal ValUES..........ccccceveveievenececeeeeeeee e 56
Probing SigNal VAIUES..........coveieeres ettt s 56
THMMING QSYSEOIM...ceiciieceeciee e s e e e e naeseesne s 57
Resetting error CoONAItIONS.........ccovcvieiecieeee e 57
SNAPPING SYSLEM SEALES ....eeveiece et re e 57
QL0101 o= oo 11 o RS 58
Chapter 6 Viewing Simulations.............c.coooiiiiiiiiiiiiinnna.n.
Pl LS.t et E et b et et nennne 59
Basic time domain PIOLS.........ccceveriieie s 60
SIZING APIOt BIOCK ... 60
o To .41 oo ST 61
Changing Plot Properties........ccvviveereeirieeeere et 61
S T oI 7= RSN S 67
Basictimedomain Strip Chart.........cccovvveive e 68
Sizing astripChart BIOCK..........cccv i 68
Printing astripChart BIOCK ..........ccovii i i 68
Changing stripChart Properties........coeoerereriesesie e e 68
[ 1T (0 = 1 73
Sizing ahistogram BIOCK..........ccccviriiecieece e 74
Changing histogram PropertieS.........coovveveeeriesesereeeeseesese e e s e eeeneens 74
Bar and NEedI€ grapS........ceeieieiesec ettt srennn 75
Sizing aMELEr DIOCK.......cveieie e 75
Changing MEter PrOPErtiES.........ccveeeeeeeieerere s e 76
(1= 110 I 1 0o 77
ANIMELTION DBSICS......ooviiiiiieree e 77
Using the animate BIOCK.........ccveeereee e e 78
Using the [iNeDraw blOCK .........cccveeeereeeesese e 81
Other waysto create animation............cocevvrerenesenieseesee e e 82
Chapter 7 Solving Implicit Equations.................cccoeieeniil.
Setting up an iIMPlICIt @QUALTON.........ccceieeiieceeeeeeere st ene 83
Solving an imPliCit EQUELTION .........cceeeiisece e e sa e e e nne s 84

Contents



Contents

Using the Implicit Solver property Sheet .........ccoeveveviccerecee e 85
Implicit @qUatioN EXAMPIES ........ccieeiereeeeeee et s e e enes 86
Simple nonlinear implicit eqUAtIoN ..o 86
Advanced nonlinear impliCit @QUALTION ..........cccvvveeeireeee e 86
Chapter 8 Performing Global Optimization ............................
Global optimiZation DASICS......cc.cieiieece et enen 89
Cost functions with many local minimum Values.........ccccoevevevievevencesesesees 89
Cost functions with No MiNIMUM VAIUES..........ccoerrireiineneeeeee e 90
Performing global OptimiZation ............cceeeeieieiise e 90
Using the Optimization Properties dialog boX .........cccecevererieveneve e, 91
Global optimization EXAMPIES........ccccieiiierereeeee e e e sresresreenens 91
Optimized paper bag Problem..........cccceieiece e 91
Two segment approxXimation of SIN(TIE).......ccoveerereinienere e 93
Five segment approximation Of SIN(TL) ........cceveivineierieereeeseee s 94
JLILC0 18 10 1= oo 11 o S 96
Chapter 9 Designing Digital Filters ................ccoeieiiiiiiiiianis
Digital filTEr DASICS ... c.eiveeeiieieiererieeese ettt et 97
(TS g0 0= = 1 o] 98
Time domain filters with tapped delay ..........cceeeeererieie e 98
Time domain filters with transfer fUNCLIONS.........ccocoveiine e 99
Frequency domain filter implementation ............ccocvvveerieneeieeeee e 99
Comparison of FIR aNd HR FIltErS ...ccueiiiicececeeeeeese e e 100
Interactive filter design with the transferFunction blocK ..., 100
T 1N g 1= Mo TSRS 100
Using the IR Filter Properties dialog BoX ........cccveveivevieiereie e 101
T 1= 0 1= T o TSP 104
Discrete and continuous FIR filter design........ccccveeveeevereievese e 104
Using the FIR Filter Properties dialog bOX ........ccccevevverieveneie e 105
Chapter 10 Working with Other Applications ..........................
IMPOITING DASICS....cveitiiiiieceieecee s et st re e e e e sa e tesrenresrennens 109
Setting Up the INPUL FIlE.....ccecee e 109
T g 0Tl (T gl [ = - VS 110
Using the Import Properties dialog BOX .........cccveveiricieesesee e 110
EXPOITiNG DSICS....cveiviiiiiecticeeeeses ettt st e e a e e et srenrennennens 111
(00 1] gl [ = - VS 111
Using the Export Properties dialog BOX .........coveveirieeieiesese e 112

Vi



DDE DBSICS.....ueueteteereesiresieieeseesesesestesesessesessssasesessesessssesessssesassssesensssesensssesensssesenessnsenes 114
Creating an app-to-VisSim link with DDEFeceiVe..........ccccveevvrievevesesneenne, 115
Creating a VisSim-to-app link with DDESeNd.........cccccovvvevievenie v 117
Creating atwo-way link With DDE ..........ccccvov v 119
Creating DDE links with applications that do not support Copy Link and
PESEE LINK ..ottt e 122

Chapter 11 Working with Large Diagrams...............c.cceueeee..

Creating model hierarchy ...........cooveie i 123
Creating acompound BIOCK ..........ccueieieieiire e 124
Drilling into acompound bIOCK .........cccccviiiirecieceercs e 124
Hiding compound BIOCKS.........ccveieieee e 125
Configuring pictures on compound blockS..........cceeveerveevieieresere e, 125
Labeling connector tabs on compound BlOCKS.........cccvvvevevvnie v, 126
Dissolving acompound BIOCK............ccceiireiienesiceceeeeeee e 126
Other things you can do with compound blocks...........ccccvevevevcevievenesecee, 127

Embedding BIOCKS.........cii e s 127
Setting up adiagram to be embedded ...........ccooeeieii e 127
Embedding ablock diagram .........c.cceceverenie s 127
Editing an embedded block diagram............ccceeeveveiievenesie e 128
Reconnecting an embedded block diagram ..........cccecevevevevecceve v 128

Adding blOCK QiagramsS ........ccviiieceeeesere e nne s 128

Using variablesto Pass SIgNalS......ccuieeererireeeee et et 129
Creating Variabl €S .........ccveieie e s 129
SCOPING VANTADIES.......oeeeceeceee et 130
BUIE-IN VArTBDIES.......oeciiieee e 132

Using path aliasesto referenCe files........ouiiriiie i 132
Creating Path @li@SES ......ccccveveii e s 132
Inserting path aliasesSin bIOCKS ... 133

Maintaining an €dit NISLONY ........ccoceviiieiesere e 134

ProteCHiNG YOUF WOIK ......eeueceieeeeieseesies e ste e s et stee e esae e e e aesae e e sre s e e esaeaenaeseensessesnens 134
Protecting block diagrams..........cccveveeieresesie e 135
Protecting compound BIOCKS.........cccvvieiererie e 136
Protecting embed DIOCKS.........ciirirecce e 138

Chapter 12 Block Reference.............cccovieiiiiiiiiiiiiiiiiieenenn.

S (2 L0 T oL TSRS 142

e G (2150 = =) 1SS RSR 143

L (o 1o L= S 145

S (1553 117 ) TSRS 147

Sl (1S5S gtz g o = o 0= (o ) 148

Contents

vii



Contents

(=0 17 (o ) PRSP 149
e (010 0= (o ) TSP 152
Dl (o = L= (=) I 153
>= (greater than or qual t0)..........cvvreriririere e s 155
T (1011 £ =) S 156
= 0 157
= (60X 159
=110 160
=1 0 = (R 161
= (S o R 161
= 1= 1 12/ 162
1S < [ 163
o174 165
o111 (P 166
o111 1o o [P 168
(7= (<= 169
(000 1011= | 172
(00 ] 1 172
(00 1S = 1 | 173
(010 1V/= ¢ 173
(00 R 173
(00 = 1 [ 174
[0/ L RSOOSR 174
(0 0155 D (<o PO PPRRRRRPR 175
0 | [ 178
5] 5 178
(D] B = o= AV 178
] 2= oo [ 178
[0S0 0110 [ 179
(0 (< A7z Y= 179
(0 TS0 S 180
0 (01 (00 (15 Tox 181
1< 10101 o [ 181
(< (0] (R 181
2 182
200 182
o 0= o TSR 182
L 184
0= 1 o 186
0= 115 T TS 188
(o1 Kol o= @0 TS i = | (S 188
L TES 00 =0 188
1 189
3] o SO 190

viii



g L= SO 190
LTSS P TP PPURURPR 192
La1e=s | (o L () ISP 192
V7= SO SO 198
TADEL .. ettt b e b b 198
1T oL ST 199
T T OSSR 201
[IMItedINtEGIrator (1/S) .....vieeeeeereee ettt e e et e e tesnesrenns 202
1T 0= = 1 TP 205
0o 1 S 205
OSSPSR 206
7= 206
L0 O PP S TSP TP PPRUPPRO 215
1= £ 217
001 = O P PR TSSO U TP URPPPRO 218
101 TS PSSRSO 218
MNUITPIY <ottt s r et ae s e e e e e e tess e tesrenrenneeneenes 220
NEUFAINEL .....cvi ettt st et e b et et e e e e ebesee e b 221
10 E TP RSP UTPPPRTURPRO 221
(o] SO S PP PRPPRR 222
072z - VS 223
PAAMELEIUNKINOWN ...ttt e e e e eesrestesneereeneeneenes 224
0] o S 224
0 224
PRBS. ..ottt b et e et b e et b et b e et b et b e ee 226
LU 1SS I =11 226
0 17 0 7 SR 227
7= 1.0 229
0= T 0= TP SPRPRSIRN 229
1= Y 2SS 230
=S 1= = (o g (A P 231
(Gl = | o TSRS PP PRSI 234
FE-DAEAOUL ....c.eceeeieeeete sttt r bbbt n e R b n b nes 234
£S= 001011 Lo o [OOSR 235
o =T 0}V oSSR PTPRP 237
£ o [ 238
S 1 [PPSR ST PRURPRR 239
£ 1] o SRS 240
£ LU o T o TSP 240
£ T L= PSPPSR 241
LS | 242
Sz (5 07 T 242
S T 244
S o T 244

Contents



Contents

S o111 7= TSRS 245
£ W 0100110 0 o 245
€21 PO OOV P R STUSRPPPTPRUPPRURPN 247
L2210 0 OSSP 248
LEL 1S DL SRR 249
ErANSFEIFUNCLION ...t nes 252
LSS 0101 ST 255
00T (o o 1T PSSP 256
80 TR (@e 117 £ o] o TSRO 256
0 T D I O 257
UNKNOWN .ttt sttt ettt sttt e e et s ae et e s e e e et e saeneebeseene et e seeneebeseeneebeneenentens 259
USEIFUNCLION ...ttt et sttt s b et s b e b ebesbeneenen 260
(V= L= o =TSSR 260
(LS o e o = SRS 260
125 U0 £ TSSO U USSP PPTPPPRPRPRPN 261
WITEPOSITIONEY ...ttt ettt bbbt e 261
(o ST OO U RS USRPPPTPRUPPRURPN 261
Appendix A Customizing VisSim..............ccoooiiiiiiiiiiinnen.
CUuStoMIZING VISSIM SEAMT-UP ..veeeereeieieestisie s ee s e e s sa e e snesre e s 263
Customizing the ViSSImM WIiNAOW ........ccceiiieieieeeriere s 264
Customizing the toolbar..........cccvvveeieeecee e 265
Customizing other SCreen SEttiNgS........ocovvveereeeeierere e 266
Creating custom impliCit SOIVENS........ccviiieeeeesee e 267
Source files for building a custom implicit SOIVEr ........cccccvvcevvrivvie s, 268
Using vissimRequest() in a custom impliCit SOIVES..........ccoovvievenieneneceseenns 268
Building acustom impliCit SOIVES ........ccccvvevieiicicecee e 270
Using the constraint block with a custom implicit solver ..........ccccoevvevvieienene 270
Creating custom global OptimiZErS.........ccvveeeeieieese e e 270
Source files for building a custom global optimizer .........cccocevvvivveevvneveseene, 271
Using vissimRequest() in a custom global optimizer...........ccocvevvievievvneinnnne 271
Building acustom global OptimiZer .........cccvveeeeeeieeeerese e 273
Appendix B Extending the Block Set .............ccoiiiiiiiinai.
LI T= oo I o Kex (U (= S SPR 275
Criteriafor WHting DLLS......ccccviieireeeeeesese s 276
20 TH o [T I 1 I L S 276
HOW ViSSIM tAIKS O @DLL c..cueeiiiiiiiecee e e 277
CalliNg CONVENLIONS ......ccveieiice et se e e sre e 277
Simulation [evel fUNCLIONS ..o 278
BIOCK 1@VEl TUNCLIONS .....cvieeiiiieicreeesee st 279



EXPOrted fUNCHIONS.......ocee et 284
D= o100 1 0T I 1€ SRS 287
Binding aDLL to auserFunction bIOCK ...........ccccvvieiiiiniie e 287
Adding a user-written block to the BIOCKS MENU..........ccccveeveieeereeecereese e 288
Appendix C Toolbox and Components Libraries .....................
QLI 0] o)== ST SRP 289
ControlStoolbOX [IBrary .......ccccvieeiiecccc e 289
Electro-mechanical toolboX library.........ccccevecevivinieieccceeeeee e 290
=0 SR (010 00>t 11 =T S 290
Signal generation toolboX lTBrary .........ccccoeeievivceeiere s 291
QL0 Le KSR (0] Jo ) 1] o =Y/ 291
L0001 070] 01 1S 292
1S 1] o] Y/ TS 292
Dynamical SyStem lIBrary .......ccccveveveeieie e 292
Electro-mechanical [1brary ... s s 292
Lot gTo T o ! 2SS 292
HydrauliC liBraries .......ccocv e 293
Process Control [iBrary .........ccceieeeeeeese e 295
Thermal Control HBrary ... e 295
TUrDINE TIBIArY ..o s 295
Appendix D Sample Block Diagrams ................cccoveinanann.
YA oS o7z o =R o [0 o Qo [0 | = 0 1S OSSP 298
Animation BIOCK diagramsS..........ccueveiiieie et eneas 298
Biophysical blocK diagrams..........cceieiiiiniciecese e 298
BuSiNESS blOCK iagramsS.......cccce ittt eneas 298
Chemical engineering block diagrams..........cceceverievesine s 299
Control design bloCK diagrams.........ccceceveieresireeeeeesee e s 300
Dynamical systemsblock diagrams.........cccecvevererieie s 300
Electro-mechanical block diagrams.........cccoceveiiiieie s 301
Environmental bloCk diagrams..........ccceeeeerieirieeieee e 301
Fixed-point DSP block diagrams.........c.eceeieirieeiere s 301
Man-machine interface block diagrams ........ccccccvvievriinecece e 301
Motion control blOCK diagrams........ccceeeeeiieeriecsee e 301
Optimization bloCK diagramsS........ccceceeeiinieie e 302
Power bBIOCK diagrams..........cccveieieiisie ettt nne s 302
Process control BlOCK diagrams..........cceeeeeeieeieserese et eneas 302
Signal processing block diagrams..........cceeeeeeveienie s 303
Logic diagrams and State MaChiNES..........cocevereierieresesese e s eeenees 303

Contents

Xi



Contents

Appendix D Working with Bitmaps ...,
VisSSim VIBWer ... o a
Distributing VisSim Viewer and your block diagramsto end USers.........ccccvevevevenenens 313
VisSim Viewer doCUMENtaioN ..........cooveirierirerieene s 313
Installing and starting VisSSim VIEWES ........ccceevrerieeeeeere e 314
VisSim Viewer End User License AQreeMENt .......ccccvvievererereeeseereeseeseeseesesssesseseessens 315
VisSim Viewer Distribution AQreemeNt ..........cceveveriereseseseeeseeeeseeseese e e sre e enens 316
1111 ) PP

Xii



Introduction

Welcometo VisSim 3, the most comprehensive modeling and simulation
environment for developing continuous, discrete, multi-rate, and hybrid system
models and running dynamic simulations on IBM PCs and compatibles. VisSim 3
contains numerous features for simplifying system design, enhancing modeling
capabilities, and strengthening its simulation engine. A thumbnail description of
each feature can be found on page xvi.

The VisSm User’ s Guide contains a comprehensive description about using VisSim
on the Windows 3.1, Windows 95, and Windows NT platforms. If you' ve purchased
Micro-VisSim 3, please read “ For Micro-VisSim users,” at the bottom of this page
for alist of specifics about your version of the software.

Registering your software

Before you begin using VisSim, please fill out the enclosed registration card and
malil it to us. Asaregistered user, you will receive afree subscription to The
flexWire, along with discount promotions and VisSim workshop schedules.

For Micro-VisSim users
If you purchased Micro-VisSim, the following limitations apply to your software:

e 100 blocks per diagram
e userFunction block isunavailable for use

e VisSim Viewer isunavailable for use

Xiii



Introduction

In addition, you also receive a compact version of VisSim/Analyze that allows you
to linearize systems containing up to seven states.

Conventions used in this hook
The following typographical conventions are used in this manual:

Convention Whereit's used

Shortcut key combinations Shortcut key combinations are joined with the plus sign
(+). For example, the command cTRL+C means to hold
down the cTRL key while you press the C key.

Hot keys Hot keys are the underlined keysin VisSim's menus,
commands, and dialog boxes. To use a hot key, press
ALT and then the key for the underlined character. For
instance, to execute the File menu’s Save command,
hold down the ALT key while you press the F key, then
release both keys and press the S key.

SMALL CAPS To indicate the names of the keys on the keyboard.

ALL CAPS To indicate directory names, file names, and acronyms.

Initial Caps To indicate menu names, commands names, and dialog
box options.

In addition, unless specifically stated otherwise, when you read “click the mouse...”
or “click on...,” it means click the left mouse button.

Getting help

To help you get the most out of VisSim, the following online information is
available:

e Online help. The online help contains step-by-step instructions for using
VisSim features.

e Onlinerelease notes. A file named README.TXT isinstalled in your main
VisSim directory. Thisfile contains last minute information and changes that
were discovered after this manual went to print. For your convenience, you
should read this file immediately and print a copy of it to keep with this manual.

You may also find it helpful to browse through the sample block diagrams included
with VisSim. These diagrams, which are listed in Appendix D, “Sample Block
Diagrams,” demonstrate how VisSim is used to solve a broad spectrum of
engineering and scientific problems.

Xiv



Introduction

Online help

VisSim's Help program provides online instructions for using VisSim.

» Toopen Help

e Do one of thefollowing:

To Do this

Accessthe top level of help Select Help from the menu bar or press
ALT+H.

Access help on the selected block Click on the Help command button in the
dialog box for the block.

» TocloseHelp

e Inthe Help window, choose File > Exit, or press ALT+F4.

Technical support

When you need assistance with aVisual Solutions product, first look in the manual,
read the README.TXT file, and consult the online Help program. If you cannot
find the answer, contact the Technical Support group viatoll call between 9:00 am
and 6:00 pm Eastern Standard Time, Monday through Friday, excluding holidays.
The phone number is 978-392-0100.

When you call in, please have the following information at hand:

e Theversion of VisSim and the version of the software operating environment
that you're using

e All screen messages
e What you were doing when the problem happened
e How you tried to solve the problem

Visual Solutions aso has the following fax and email addresses:
Address’Number ~ What it’sfor

978-692-3102 Fax number

bugs@vissol.com Bug report

doc@vissol.com Documentation errors and suggestions
sales@vissol.com Sales, pricing, and general information

tech@vissol.com Technical support

XV



Introduction

What’s new in VisSim 3

Xvi

Feature Function Benefit Application
Enhanced vector Handles vector Simplifies 6 DOF aerospace simu-
and matrix and matrix algebra  model design lations, state-space
operations (buffer, system simulation and
dotProduct, invert, control
multiply, trans-
pose, and vsum)

Cexpressionblock  AllowsC Simplifies Any simulation where
command or model design arithmetic expressions
expression to be need to be simplified
part of aVisSim
diagram

derivative block Calculates the Extends All simulations
changeinfunction  modeling
value with respect capabilities
totime.

Windows Visually depicts Improves Large, complex models

Explorer-like organizational ability to navi- with multiple hierarchi-

interface hierarchy of a gate block dia- ca levels
diagram gram models

Probe data value Displays data Extends data All simulations
entering and exit- visualization
ing blocks capabilities

Data conversion Converts units of Extends All simulations
measurement of modeling
data (supports capabilities
temperature, capa
citance, speed,
mass, energy, and
power conversions
and more)

Connector labels Adds connector Enhances All simulations
labelsto model
compound blocks readability

Connection class Categorizes Enhances All simulations
connections by model
class name and readability

color for easy
recognition of
subcomponents



Introduction

Feature Function Benefit Application
3-D mapping Provides Extends All simulations
simultaneous modeling
mapping for three capabilities
independent
variables
Floating labels Displays labels on Enhances All simulations
top of other blocks  model
when they overlap  readability
Multiple datatypes  Supports char, Extends Prototyping and
unsigned char, modeling development of fixed
short, unsigned capabilities point and mixed (fixed
short, int, long, and floating point)
unsigned long, system simulations and
float, and double. automatic code
generation
Datatype Follows ANSI C Extends Same as above
propagation data propagation modeling
ruleswhen mixing  capabilities
datatypes and
propagates the
correct datatype
Color coding of Displays block Enhances Same as above
datatypes datatypes by model
color readability
Print preview Displaysa Enhances All simulations
diagram asit will printing
look when printed capabilities
Auto-pan Scrolls when the Enhances user All simulations
MOouse nears interface
window edge
Customizable Allows print Creates All simulations
headers and macros in user- customized
footers defined header reports
and footer text
strings
Path macros Allows user- Aids multi- Large models
defined namesin platform
file paths installations
Floating Find and Navigates mo- Extends Large models
Replace Block dels by selecting modeling and
commands layer of matched debugging
block name capabilities

Xvii



Introduction

References to other books

xviii

Feature Function Benefit Application
Multi-XY traces Allow two Extends Multi-body simulations
simultaneous XY modeling
traces on one plot capabilities
(for example,
“seeker vs.
target”)
Enhanced Warnif timedelay = Speeds model All simulations
simulation or pulseinterval is  debugging
warnings non-integral
multiple of base
step size
Tool tips Pop-up toolbutton Enhances user All simulations
descriptions interface
Tear-off toolbars Move toolbars Enhances user All simulations
anywhere on interface
screen
For information on Refer to

Block diagram modeling

and simulation

Scientific computing

Karayanakis, Nicholas M., Computer-Assisted Simulation of

Dynamic Systems with Block Diagram Languages. CRC Press,

1993.

Abramowitz, M.; Stegun, I. A. Handbook of Mathematical
Functions, Applied Mathematics Series, vol. 55, Washington:
National Bureau of Standards; reprinted Dover Publications,

New York, 1968.

D’ Azzo, John J.; Houpis, Constantine H. Linear Control
System Analysis & Design - Conventional and Modern.

McGraw-Hill Book Company, 1988.

Fitzgerald, A. E.; Kingdley, Charles Jr.; Umans, Stephen D.
Electric Machinery. McGraw-Hill Book Company, 1983.

Flannery, B. P.; Press, W. H.; S. A.; Vetterling, W. T.
Numerical Recipes, The Art of Scientific Computing.

Cambridge University Press, 1989.



Introduction

For information on Refer to

Scientific computing Franklin, Gene F.; Powell, David J. Digital Control of
Dynamic Systems. Addison-Wesley Publishing Company,
1980.

Gear, C. W. Numerical Initial Value Problemsin Ordinary
Differential Equations. Prentice-Hall, 1971.

Stoer, J.; Bulirsh, R. Introduction to Numerical Analysis.
New York: Springer-Verlag, 1980.

Computer Programming  Darnell, Peter A.; Margolis, Philip E. C: A Software
Engineering Approach. Springer-Verlag, 1990.

Xix



Chapter 1

This chapter covers the following information:

Starting VisSim
Exploring the VisSim window

Choosing commands and using )

dialog boxes
Creating block diagrams
Opening block diagrams

Undoing an editing action

Starting VisSim

The table below describes the start-up methods for Professional VisSim and Micro-
VisSim. Y ou can customize how VisSim starts up by editing the start-up command

ne, as described on page 263.

Platform

VisSim Basics

Repainting the screen
Saving block diagrams

Previewing and printing block
diagrams

Setting up VisSim
Quitting VisSim

Start-up method

Windows 3.1+

Windows 95 and Windows NT

Start up the Program Manager; then double-click on
the VisSim icon in the VisSim group window.

Click on Start > Programs > VisSim; then double-
click on the VisSim icon.



Chapter 1 VisSim Basics

Exploring the VisSim window

When you start VisSim, a new, empty block diagram, like the one shown below, is
automatically created for you.

. o Vi Sim - [_To[x]
Title bar File Edit Simuate Blocks Analyze Yiew Help
—————————— D= B sl ez 8] Menu bar
Tear-away toolbars Dot ﬂ
Diagram tree
Work area
KN ;Ij Scroll bars
Blacks [0 Range [0:1 Step [0.05 Time [0 [Ready [F 2
Status bar

Title bar: Lists the application name and currently opened block diagram. Unnamed
diagrams are titled Diagraml. The title bar also contains the Minimize, Maximize,
and Close buttons. The Minimize button shrinks the VisSim window to an icon; the
Maximize button enlarges the VisSim window to fill your entire screen; and the
Close button closes the VisSim window.

Menu bar: Liststhe six basic menus availablein VisSim: File, Edit, Smulate,
View, Blocks, and Help. If you have installed a VisSim add-on, for example
VisSim/Analyze, additional menus may appear on the menu bar. Clicking on a menu
name displays alist of VisSim commands or blocks.

Tear-away toolbars: The buttonsin the toolbars represent commonly used VisSim
commands. To select atoolbar button, click onit.

Each cluster of buttons represents a tear-away toolbar. For example, the Main
toolbar consists of the following buttons:

NECEEEEEE

There are eight tear-away toolbars: Main, Sim Control, Annotation Blocks,
Arithmetic Blocks, Boolean Blocks, Consumer Blocks, Producer Blocks, and User.
By default, the Main and Sim Control toolbars appear when you start up VisSim.
These toolbar buttons are described on the next page.



Chapter 1 VisSim Basics

~u e =

Dl El=] #lEE sz Moz 21

A B |C D E |F G H | J |K L M N
A File>New command H Edit > Add Connector command

B File> Open command | Edit > Remove Connector command
C File> Save command J Simulate > Go command

D File> Print command K Simulate > Stop command

E Edit > Cut command L Simulate > Single Step command

F Edit > Copy command M Simulate > Continue command

G Edit > Paste command N Help command

Astheir namesimply, the Annotation, Arithmetic, Boolean, Consumer, and
Producer Blocks toolbars represent blocks in each of the corresponding categories.
For descriptions of these blocks, see Chapter 12, “Block Reference.” The User
toolbar allows you to create your own toolbar buttons. For more information, see
page 265.

If atoolbar restricts your view of your work, drag on its background to moveit to a
new location, or click on its background to display a menu from which to closeiit.

Y ou can aso use the View > Toolbar command to close toolbars. For more
information, see page 264.

Dimmed toolbar buttons

Sometimes, when atoolbar button is dimmed, it is because the last cursor
position was in the |eft window pane. Click the mouse anywhere in the right
window pane to activate all available toolbar buttons.

Status bar: Provides simulation information about the current diagram, including
the block count, simulation range, integration algorithm, step size, and implicit
solver. When you run asimulation, the elapsed simulation time is also displayed.

Displaying menu command and toolbar descriptionsin status bar

When you drag the mouse over a menu, menu command, or toolbar button,
VisSim displays a brief description of the item in the status bar.

Y ou can show or hide the status bar at any time using the View > Status Bar
command.



Chapter 1 VisSim Basics

Scroll bars: Pans the current viewing window. There are three ways to pan with the
scroll bars. Click on the scroll arrows to scroll in small increments; click on the
scroll bar to scroll in screen increments; or drag the scroll box to alocation on the
scroll bar that approximates alocation in the block diagram.

Y ou can show or hide the scroll bars at any time using the Edit > Preferences
command, as described on page 264.

Auto-panning

Whenever you drag a block or draw awire beyond the visible portion of the
working area, VisSim will automatically scroll the work area

Diagram tree: The VisSim window is divided into two panes. The |eft pane
displays adiagramtree; that is, an outline of the diagram’s compound blocks. At the
top of the diagram tree is the Block Diagram icon, which represents the highest level
of the currently opened block diagram. Its name appears next to the icon.

Beneath Block Diagram are the names of the compound blocks encapsulated in the
block diagram. Y ou can expand and collapse the diagram tree to display more or less
detail by clicking on the plus or minus signs that appear next to the diagram and
compound block names.

Whatever you select in the diagram tree is displayed in the right window pane. For
example, if you select Block Diagram, the top level of the block diagram is
displayed in the right window pane. Y ou can jump to a specific compound block
without wading through block diagram hierarchy by simply selecting the compound
block name in the diagram tree.

If the diagram tree takes up too much space or if you cannot see all the hierarchical
information in the tree, you can change its width by dragging its right edge.

Choosing commands

Y ou can choose menu commands using the mouse or the keyboard. To choose a
menu command with the mouse, click on the menu, then click on the command. To
choose a menu command with the keyboard, press ALT to activate the menu bar, then
press the key corresponding to the underlined letter in the menu, and finally press the
key corresponding to the underlined letter in the command.



Chapter 1 VisSim Basics

I Ellipsis indicate that a
dialog box is displayed.

Fonts...

Colors... —

Block Labels
Connector Labels
Display Mode
Data Types
Presentation Mode

Control Panel
v Status Bar
v Toolbar

A check mark indicates that the
command is turned on.

For commonly used menu commands, you can either:

e Pressshortcut keys, which are listed on the menu to the right of the commands.
For example, press CTRL+C to execute Edit > Copy.

e Pressacorresponding toolbar button. For example, press P to execute
Simulate > Go.

If amenu command is dimmed, it is unavailable for use.

Missing dialog boxes

If you choose a command with an ellipsis (for example, the File > Print
command and the dialog box for the command is not displayed, click the
mouse anywhere in the right window pane and re-select the command.



Chapter 1 VisSim Basics

Using dialog boxes

VisSim uses dialog boxes to gather and display information about a command or

block.

Options | Labels | Axis | Appearance|

™ Fixgd Bounds ™ Logx Tab
I Erequency Domain I LogY
I OwerPlot I Decibel Y
PiotCount  [I I Grdlines Check box
I Geomatricharkers

Marker Count. 10 Fiead Coordinates.
I~ Extemal Trigger

™ Betrace Interval
I xvPiot Xeds: [T i
I~ Muliple %Y traces Drop'dOWn list box

LineType:  [lne v
Platied points: [512

Text box

ok | concal |

Tab: Allows similar options to be grouped together. When you click on atab, a
corresponding property sheet is brought to the front.

Check box: Sets or clears a particular option. When a v appears in the box, the
option is activated.

Drop-down list box: Providesalist of several options. Click on the DOWN ARROW
to select from alist of options.

Text box: Allows you to enter text strings. Move the pointer over atext box until it
changes into an | beam; then type in the text.

Font syle: Size

[Peguiar [ I !
m = C:L‘ Command button

" Arial Black =

Italic
T Arial Narnow Bold

I Aviel Roundied MT Boldl Bold falic
i Avalon

It Bohomas

T BahamasHeawy =

v =l Scrolling list box

E
™ Strikeout

I™ Underline ABOYYZE Display box

Calor.

ek ~] | Sscipt

This is & TrueType font. This same fontwill be used on both yaur
screen and your printer.

Command button: Causes an action to happen. Command buttons with ellipsis
invoke another dialog box. Command buttons with a darkened rim are the default
action. Y ou can press the ENTER key to execute the default command button.



Chapter 1 VisSim Basics

Scrolling list: Allowsyou to select from alist. Click on the scroll bar, scroll box, or
scroll arrows to scroll through the list.

Display box: Provides avisual representation of your selection.

 Optimization Setup

[x]
Method———————  perform optimization
 Powell Max iterations:  [{
© Polak Ribiere ’_
Error Tolerance: |1
© Fletcher Reeves R d b
adio button

oK Cancel | Help |

Radio button: Used to present two or more mutually exclusive options. Y ou must
pick one of the choices by clicking on it. When a black dot appearsin the radio
button, it is selected.

Creating and setting up a new block diagram

To open anew diagram, choose the File > New command, or click on [ in the
toolbar. If you're working on a different diagram and haven't yet saved your
changes, VisSim prompts you to save them, then creates a new diagram. VisSim
temporarily names the diagram Diagraml. Thefirst time you attempt to saveit,
VisSim asks for a new name.

When you begin working on a new diagram, you usually start by setting up the page
with the File > Page Setup command. As you choose options in the Page Setup
dialog box, a sample of your selectionsis displayed in the top right-hand corner of
the dialog box.

Page Setup

- Orientation
1 Portrait
" Landscape

— Marging [inches]——

Lee [i”

Right: |1"

N

Bt |_1.. ™ Fit diagrams to page

botom: [ Tile printed page for large diagrams
Header | |

Footer: | ﬂ

Paper

Size: [Lettera 12411 in |

Source: IAuto Select j

oK I Cancel | Printer. |




Chapter 1 VisSim Basics

Orientation: You have the choice of Portrait or Landscape. Activate Portrait for a
page that istaller than it iswide. If you want the opposite, activate L andscape.

Margins (Inches): The margins control the distance between diagram elements
(blocks and wires) and the edge of the paper. VisSim does not display margins
unless you are in print preview mode. In this mode, they appear as blue, nonprinting
lines. Headers and footers, if specified, appear inside the margins.

Paper: Click on the bowN ARROW in the Size box and select a standard paper size
from the list; then click on the bowN ARROW in the Source box to select the paper
source (that is, the tray the printer uses to print the diagram).

Fit Diagram to Page: When Fit Diagram to Page is activated, VisSim prints each
level of the block diagram on a separate page. When necessary, VisSim reduces
diagram text so the level will fit on a single page within the specified margins.
Because VisSim prints each level individually with the minimal reduction possible,
the levels of amulti-level diagram may be sized differently.

VisSim may not be able to print extremely large block diagrams when Fit Diagram
to Pageis activated. In these cases, VisSim gives you the opportunity to abort the
print operation. If you choose to continue printing, VisSim prints as much of the
diagram as will fit on the page.

Tile Printed Pagefor Large Diagrams. Tile Printed Page for Large Diagrams
causes VisSim to print each level using as many pages as necessary to print it
without resizing. The margin settings are honored for each page.

Header and Footer: You can create headers and footers by entering text in the
Header or Footer box. To view headers and footers, you must bein print preview
mode. Headers and footers appear within the established page margins on each
printed page of the diagram.



Chapter 1 VisSim Basics

Using fieldsto enter header and footer information

By using fields, you can automatically insert information into a header or
footer. For example, you can use fields to insert the file name of adiagram,
the date the diagram was created, and so on.

To enter afield, click on the bowN ARROW in the Header or Footer box and
select one or more fields from the list. When you select afield, it appears as
afield code in the Header or Footer box.

Field Field code
File name $f
File path $F
Block path $H
Date $D
Integration method $l
Optimization $0
Page number $p
Range $G
Step size $S
Left justify $L
Center $C
Right justify $R

Using File> Print for page setup

Y ou can use the File > Print command to reset the orientation, paper size,
paper source, tiling, and fit-to-page options.



Chapter 1 VisSim Basics

Opening an existing block diagram

You can easily open any of the last 12 block diagrams you worked on. When you
click on the File menu, VisSim displays their names at the bottom of the menu.

To open any block diagram, choose the File > Open command. If another diagram is
currently opened and contains unsaved changes, VisSim asks you if you want them
saved before it closes the diagram and displays the File Open dialog box.

When you assign atitle to ablock diagram using the Diagram Information
command, the title appearsin the File Open dialog box when you select the block
diagram.

» Toopen ablock diagram

1. Do oneof thefollowing:
e From the toolbar, choose .
e Choose File > Open.

2. Inthe File Name box, type or select the name of the block diagram you want to
open. If you do not see the block diagram you want, select anew drive or
directory.

3. Toopen the block diagram for viewing only, activate the Read Only parameter.
Although you can edit the block diagram, you must save the diagram under a
new name to retain your edits.

4. Click onthe OK button, or press ENTER.

Undoing an editing action

If you make a change to a block diagram then decide against the change, use the
Edit > Undo command to eraseit. If the Undo command is dimmed, the effect of the
command cannot be undone.

Repainting the screen

10

Choosing Repaint Screen under the Edit menu redraws blocks and wires, and clears
the screen of remnants left over from earlier VisSim manipulations.



Chapter 1 VisSim Basics

Saving a block diagram

When you open ablock diagram, VisSim reads the diagram into your computer’s
memory. As you work on the diagram, the changes you make are temporary. To
make the changes permanent, you must save them to disk.

Retaining diagram appearance on different graphic resolutions

If you activate Snap To Grid under Preferences in the dialog box for the
Edit > Preferences command, VisSim saves block positionsin units of Y2
the average character size of the currently selected font. Thisresultsin a
more consistent appearance of the block diagram over different graphic
resolutions.

P Tosavean existing block diagram
e Do one of thefollowing:

e  From thetoolbar, choose .
e Choose File> Save.

You can use File > Save Asto save the block diagram under anew name or to a
different directory or device. This command comesin handy when you want to alter
the current diagram but keep its original version.

Previewing hefore printing

Printing

Usethe File > Print Preview command to display ablock diagram asit will ook
when printed. Headers and footers, if specified, appear at the top and bottom of the
pages according to the specifications established with the File > Page Setup
command. Similarly, margins, if specified with File > Page Setup, are displayed in
nonprinting, blueink.

Y ou can zoom in and out of the page using the Zoom buttons in the Print Preview
toolbar.

The File > Print command lets you choose a printer and select printing options, such
as the number of copies, the layers to be printed, and so on.

» Toprint ablock diagram on Windows
e Do one of thefollowing:

e  From thetoolbar, choose &

1"



Chapter 1 VisSim Basics

12

e Choose File > Print.

P Toset printing options
1. Do oneof thefollowing:

e  From thetoolbar, choose &

e Choose File > Print.

2. Do one or more of the following:

Toprint

Do this

Multiple copies
The current level of the diagram

The current level and below

All levels of the diagram

Each level of the block diagram
on a separate page, and when
necessary, reduce diagram text
so thelevel fits on asingle page

Each level using as many pages
as necessary to print it without
resizing

A version of the block diagram
to afileto be printed at alater
date or to be used in another
program

In the Copies box, enter a number.
Under Print Range, activate Current Level.

Under Print Range, activate Current Level and
Below.

Under Print Range, activate All.

Activate Fit to Page. Because VisSim prints each
level with the minimal reduction possible, the
levels of amulti-level diagram may be sized
differently.

VisSim may not be able to print extremely large
block diagrams when Fit to Page is activated, In
these cases, VisSim gives you the opportunity to
abort the print operation. If you choose to continue
printing, VisSim prints as much of the diagram as
will fit on the page.

Activate Tile Pages. The margin settings are
honored for each page.

Activate Print to File and then click on the OK
button, or press enter. In the ensuing dialog box,
specify aname for the block diagram you want to
print.

Selecting a printer: The currently selected printer appears in the Printer box when
you choose the File > Print command. To select a different printer, choose the Setup
command button. If the printer you want to use is not listed, you must install the
printer driver software on your system viathe system Control Panel. To invoke the
system Control Panel from VisSim, use the File > Printer & System Config
command; then see the Microsoft Windows User’ s Guide for installation procedures.



Chapter 1 VisSim Basics

Selecting additional printing options: Y ou can also specify a paper size,
orientation, and paper source for the printed diagram by clicking on the Setup
command button. The sel ections you make here override selections you made
previously with the File > Page Setup command.

Setting up the VisSim environment

Y ou can customize VisSim to suit the way you work. Y ou can, for example, use
commands in the View menu to change the color of the work area, plotting area, and
wires, specify diagram fonts, and switch between presentation modes. Other
preferences are set with the Edit > Preferences command. These include coloring
compound blocks, alternating between black and white, and color displays, and
using training mode.

For more information on setting up the VisSim environment, see page 266.

Exiting VisSim
When you' re finished working and decide to exit VisSim, use the File > Exit
command, or press ALT+F4 to end your VisSim session. VisSim checks that all your

work has been saved. If there are any unsaved changes, VisSim asksif you want
them saved before exiting.

13



Chapter 2

Inserting, Setting Up, and Wiring
Blocks

This chapter covers the following information:

e |nserting blocks e Positioning, hiding, deleting, and

e  Setting up block properties coloring wires

and initial conditions e Using variablesto passsignals

e Wiring blocks e Manipulating connector tabs

Block hasics

In VisSim, you build system modelsin the form of block diagrams. Blocks are your
basic design component. Each block represents a specific mathematical function.
The function can be as simple as asin function or as complex as a 15" order transfer
function.

15



Chapter 2 Inserting, Setting Up, and Wiring Blocks

Types of blocks

VisSim offers over 90 blocks for linear, nonlinear, continuous, discrete-time, time
varying, and hybrid system design. Blocks are categorized under the Blocks menu as

follows:

e Animation e Nonlinear

e Annotation e  Optimization

e Arithmetic ¢ Random Generator
e Boolean e Signa Consumer

e DDE e Signal Producer

e |ntegration e TimeDday

e Linear Systems e Transcendental

e Matrix Operations

In addition, VisSim supplies three specia -purpose blocks: embed, expression, and
userFunction.

Custom blocks

If your design requirements extend beyond the blocks supplied by VisSim,
you can create custom blocksin C, Fortran, or Pascal, as described in
Appendix B, “Extending the Block Set.”

Identifying block parts

When you insert ablock into adiagram, various symbols and text appear on it.

Triangular-shaped connector tab through

which signals, or data, enter or exit the block.
Connector symbol,

which indicates an
action applied to the
input signal, a condition
of the input signal, or a
signal identifier.

Block name or symbol denoting its function.

16



Chapter 2 Inserting, Setting Up, and Wiring Blocks

Y ou can display additional information on the blocks in your diagram using the
View > Block Labels command, as described on page 267.

Inserting blocks

You insert blocks into a diagram by selecting them from the Blocks menu and
placing them in the work area. When you click on the Blocks menu, alist of blocks
and block categories appears. Block categories are depicted by filled triangles (»).
When you click on ablock category, a cascading menu appears listing the additional
blocks.

» Toinsert ablock from the Blocks menu
1. Choose Blocks from the menu bar.

2. Poaint to the block category and click the mouse. For example, point to
Nonlinear and click the mouse to display the nonlinear blocks.

3. Poaint to ablock and click the mouse. For example, point to crossbetect and
click the mouse to choose the crossbDetect block.

The Blocks menu closes and a rectangular box appears with the pointer
anchored in the upper left-hand corner of the box.

4. Poaint to the location in the diagram where you want to insert the block and click
the mouse.

Setting up block properties and initial conditions

Most blocks have user-settable properties associated with them that allow you to set
simulation invariant parameters of the blocks' functions. Y ou define and change
property values for ablock through its Properties dialog box. When you change a
property while the smulation is running, VisSim immediately updates the simulation
to reflect the change. Initial conditions, which are supplied to the system at the start
of asimulation, are also set in the blocks viatheir Properties dialog boxes.

» Toset up block properties
1. Choose Edit > Block Properties.

2. Poaint to the block whose parameters you want to define or change and click the
mouse.

3. Inthe Properties dialog box, enter or select the new parameter values and
options, and then choose the OK button, or press ENTER.

17



Chapter 2 Inserting, Setting Up, and Wiring Blocks

18

Shortcuts for accessing Properties dialog boxes

A shortcut for accessing Properties dial og boxes for most blocksisto click the
right mouse button over the block. For button, compound, embed, TabeT,
userFunction, and variable blocks, hold down the CTRL key while you
click the right mouse button to access their Properties dialog boxes.

Entering numeric data

When entering numeric data, VisSim displays values greater than 105 or less than
106in exponentia notation. VisSim uses the letter “€” to indicate exponential
notation; however, on input, it also recognizes the letter “E.” For example, you can
enter 6,000,000 in the following ways: 6e6 or 6E6.

Entering arithmetic expressions

Most numeric block parameters can be expressed using the arithmetic operators “+,”
“- ) ex e and the usual rules of precedence. For example:

2% (5+4)=18
2*5+4=14

Entering C expressions

VisSim also recognizes C expressions for numeric data. This means you can build
elementary mathematical functions using acos, asin, atan2, cos, cosh, exp, fabs, log,
l0g10, pow, sin, sinh, sgrt, tan, and tanh. For example, if you enter pow (2,3) to the
Gain parameter on the gain block, VisSim calculates 8. VisSim also interprets the
universal constant pi as .

Learning C
If you are unfamiliar with the C language and want to learn how to enter

mathematical functionsin C format, see C: A Software Engineering Approach,
(P. Darnell and P. Margolis, Springer-Verlag, 1990).



Chapter 2 Inserting, Setting Up, and Wiring Blocks

Controlling the number of displayed significant decimal
digits

Numeric block properties are always calculated in up to 15 significant decimal
digits, however, you have the choice of displaying them in up to 6 or 15 significant

decimal digits. The High Precision Display option under Preferencesin the dialog
box for the Edit > Preferences command controls the display.

Pieferences [ %]

Preterences | Path A\iasesl

¥ Show Harizontal Scrall Bar - W Color Display
B W Color Compound Blocks
™ Training Mode Labeks:

A check activates 15 I Snapto G
significant decimal digit

! Auto Connect Radius
dlsplay. ID.5 [inches)

Ok I Cancel Aol

Wiring basics

By wiring blocks together, VisSim is able to pass signals among blocks during a
simulation. Signals are simply data. Input signals (x,) represent data entering blocks;
output signals (y,) represent data exiting blocks.

Wireless transmission of signals

A variabTle block lets you name and transmit asignal throughout a block
diagram without using wires. Typically, you use a variable block for
system-wide variables or signals that would be laborious or visually messy
to represent as wires. For more information, see page 129.

Types of wires
VisSim offers two types of wires:

o flexWires
e vector wires

A flexWireisathin wire that allows asingle signal to pass through it. A vector wire,
on the other hand, is athick wire that contains multiple flexWires. Typically, you
use vector wires when performing vector or matrix operations, or to reduce wiring
clutter at top-level diagram design.

19



Chapter 2 Inserting, Setting Up, and Wiring Blocks

20

The table below lists the blocks that accept vector wires:

Block category Block name

Annotation index, scalarToVec, variable, vecToScalar,

wirePositioner

Arithmetic 1/X, -X, *, /, abs, convert, gain, power, sign,

summingJunction, unitConversion

Matrix Operations buffer, dotProduct, fft,ifft, inverse, multiply,

transpose, vsum

Nonlinear case, merge

Y ou can manually bundle and unbundle flexWires using the scalarTovec and
vecToScalar blocks.

Wiring rules

Y ou attach flexWires and vector wires to blocks through their connector tabs. Once
you have attached awire to a block, VisSim maintains the connection even asyou
move the block around the screen.

When you wire blocks, the following rules are in effect:

Wires can only be drawn between an input and output connector tab pair. The
triangular shape of the connector tab lets you easily distinguish inputs from
outputs.

Input connector tabs can only have one wire attached to them; output connector
tabs can have any number of wires attached to them. To change the number of
connector tabs on a block, follow the procedures on page 23.

If you draw multiple wires between two blocks, VisSim automatically skews
them.

Wiring blocks together

>
1

Towiretogether blocks
Point to a connector tab on one of the blocks to be wired. The pointer becomes

an

Hold down the mouse button and drag the pointer over the connector tab on the
destination block.



Chapter 2 Inserting, Setting Up, and Wiring Blocks

Enter a value in
inches

Asyou drag the pointer, VisSim generates a colored line, which represents the
wire. Because VisSim draws lines vertically and horizontally, the path of the
line may not mimic the path of the cursor.

3. Release the mouse button.

Automatically completing connections

Y ou can control how close the pointer must be to a connector tab to automatically
complete a connection with the Auto Connect Radius option under Preferencesin
the dialog box for the Edit > Preferences command.

Pieferences [ %]

Preterences | Path A\iasesl

¥ Show Harizontal Scrall Bar - W Color Display

¥ Show Yeitical Scrol Bar ¥ Color Compound Blocks
I i 1 I Training Mode Lahels
™ Shapto Grid

—&uto Connect B adius
T ID 5 [inches]

Ok I Cancel Apnly

Positioning wires

Using wi rePositioner blocks, you can perform a connect-the-dot method of
wiring. That is, you insert wirepositioner blocks and then manually route the
wire through them. Since you control the placement of the wi rePositioner
blocks, it’s easy to draw a precise wiring path.

Additionally, because wi rePositioner blocks do not take any additional
computation time, you won't see a decrease in performance during a simulation.

Both flexWires and vector wires can by routed through wi rePositioner blocks.

Coloring wires

By default, wires are drawn in black. Y ou can, however, change the default color
using the View > Colors command, as described on page 267.

Y ou can a'so apply color to specific wires by assigning a connection class to the
corresponding connector tabs. This wire coloring method is described on page 24.

21



Chapter 2 Inserting, Setting Up, and Wiring Blocks

Hiding wires

When you activate display mode with the View > Display Mode command, VisSim
hides all wiring. Typically, you activate display mode when you want to display a
control or instrumentation panel without the underlying connections, or when you
want to view an animation.

Deleting wires

Y ou delete awire by detaching it from an input connector tab. Just point to the tab
and hold down the mouse button as you drag the pointer away from the tab. When
you rel ease the mouse button, VisSim erases the wire.

Connector tab hasics

22

All blocks that operate on signals have connector tabs. VisSim distinguishes
between input and output connector tabs. Input connector tabs enable signals to enter
ablock; output connector tabs enable signals to exit a block. The triangular shape of
the connector tab lets you easily see the direction in which the signals travel.

Some blocks have symbols on their connector tabs that indicate how the block acts
on the data or the type of data the block is expecting. For example, the“-" on the
summingJunction block meansthat the input is negated. See the descriptions of
theindividual blocksin Chapter 12, “Block Reference,” for connector tab symbol
definitions.

Adding and removing connector tabs

Y ou can add or delete connector tabs on most VisSim blocks. If you delete a
connector tab with an attached wire, the wireis also deleted.

Connector tabs on compound blocks

Because additional connector tabs are unconnected in compound blocks, make
sure you verify the input and output connections after you complete this
procedure.

» To changethe number of connector tabson a block
1. Do oneof thefollowing:

e  From thetoolbar, choose Zs or =s.

e Choose Edit > Add Connector or Edit > Remove Connector.



Chapter 2 Inserting, Setting Up, and Wiring Blocks

2. Do one of the following:

To Do this

Add a connector tab Point to where you want the tab. The short black
line indicates tab placement. Then click the
mouse.

Delete a connector tab Point to the tab to be deleted. The selected tab has

ashort black line over it. Then click the mouse.
Repeat step 2 for as many tabs that you want to add or delete.

4. Click the mouse on empty screen space to exit this command.

Unconnected input connector tabs

Except on * blocks, al unconnected inputs are fed zeros, by default. Unconnected
inputs on * blocks are fed ones.

Setting connection classes

Connection classes provide an easy method of organizing your calculations by name
and color. Y ou assign connection classes through the Connector Properties dialog
box. To access this dialog box, double-click the mouse over a connector tab.

Connector Properties

Corhectar ||

Corhection cla:

Clags Mame: I ~

™ Restrict connections to class members

ok I Cancel |

A class connection consists of a class name and corresponding color. The color is
applied to the wire attached to the connector. For example, you can assign the class
name PRESSURE to all connectors whose input and output signals relate to pressure

calculations. All wires entering or exiting those connectors would then be displayed
in the same color.

» Toassign aclass

1. Point to the connector tab to be classified. The pointer turns into an upward
pointing arrow.

2. Double-click the mouse.

23



Chapter 2 Inserting, Setting Up, and Wiring Blocks

3. Inthe Class Name box, enter aname, or click on the bowN ARROW to select an
existing name.

4. Inthe Color box, click on the bowN ARROW and select from the drop-down
color list.

5. Click on the OK button, or press ENTER.

» Tochangeaclasscolor
Changing the color of all the connectionsin aparticular classissimpletodoin
VisSim.
1. Point to a connector tab whose class color you want to change. The pointer turns
into an upward pointing arrow.
Double-click the mouse.

3. Inthe Color box, click on the bowN ARROW and select from the drop-down
color list.

4. Click onthe OK button, or press ENTER.

Restricting connections to class members

If you want to prevent wires from being drawn between connector tabs of different
classes, activate the Restrict Connections to Class Members box in the Connector
Properties dialog box.

Displaying connector tabs in a different view

The View menu’s Presentation Mode, Display Mode, and Data Types commands
have different affects on how connector tabs are presented. For information on these
commands, see page 266.

24



Chapter 3

Arranging Blocks

This chapter covers the following information:

Selecting blocks

Moving and copying blocks
Flipping blocks

Aligning blocks

Finding and replacing blocks
Deleting blocks

Selecting blocks

Once you have inserted a block into a block diagram, you will probably have to
select the block in order to manipulate it. When you select a block, VisSim
highlightsit in black and outlinesit in white.

When you select a compound block, all encapsulated blocks are implicitly selected.

» Toselect ablock
1. Point to the block.

2. Hold down the sHIFT key and click the mouse.

25



Chapter 3 Arranging Blocks

Area Selecting

A quick way to select one or more blocksisto use area select , which lets you draw
abounding box around the blocks you want to select. If any part of ablock is
contained in the bounding box, it is automatically selected.

P Toperform an area select
Point to one corner of the area you want to select.

1
2. Toanchor the corner, hold down the mouse button.

3. Drag the pointer until the box encloses all the blocks you want selected.
4

Rel ease the mouse button.

Toggle selecting

This action automatically selects all unselected blocks at the current level, and
unselects all selected blocks at the current level.

» Totoggle select blocks
1. Point to empty screen space.

2. Hold down the sHIFT key and click the mouse.

Unselecting blocks
You can easily cancel the selection of individual blocks.

» Tounselect blocks
1. Point to the selected block.

2. Hold down the sHIFT key and click the mouse.

When blocks are unsel ected they are returned to anormal video display.

Moving and copying blocks

26

Moving and copying blocks are common operations you' [l performin VisSim. Like
many operations, there are several ways to move and copy blocks. For instance, you
can move blocks by dragging and dropping them into place or you can cut them to
the Windows Clipboard. From there, you can paste them back into your diagram or
into another VisSim diagram. Y ou can al so paste them into other Windows-based
applications.



Chapter 3 Arranging Blocks

Rules for moving and copying blocks
The following rules are in effect when you’ re moving and copying blocks:

Moved and copied blocks retain the parameter values of the original blocks.

Moved and copied blocks retain their internal wiring. This means that wires
connecting blocks within the group of copied or cut blocks are retained.

Moved and copied blocks lose their peripheral wiring. This means that wires
connecting blocks in the group of blocks being copied or cut to other blocks are
not retained.

When moving or copying a compound block containing aglobal variable
block with input, VisSim appends a number to the variable block nameto
keep it unique.

Drag-and-drop editing

An easy way to move or copy blocks within the current level of the diagram iswith
drag-and-drop editing. If you’ re moving or copying blocks to another level in the
diagram, or to a different block diagram, you have to use the Edit menu’s Cut, Copy,
and Paste commands.

N PY O PRPY

N PY A®

To moveasingle block using drag-and-drop editing
Point to the block to be moved and hold down the mouse button.

Drag the block to the new location in the diagram.
Release the mouse button.

To move a group of blocks using drag-and-drop editing
Select the blocks to be moved.

Point to one of the selected blocks and hold down the mouse button.
The selected blocks are replaced with an empty box.

Drag the box to the desired location in the diagram.

Release the mouse button.

To copy asingleblock using drag-and-drop editing

Point to the block to be copied.

Press CTRL+sHIFT while you simultaneously click the mouse.

Asyou move the pointer away from the block, a box appears. The box shows
where the copy will be placed.

27



Chapter 3 Arranging Blocks

28

3.

Point to the location where you want the copy inserted and click the mouse.

If you want to copy agroup of blocks, see the description below.

Copying, cutting, and pasting blocks

The Copy, Cut, and Paste commands use the Windows Clipboard to transfer blocks
to another block diagram level or to adifferent block diagram. Y ou can also use the
Clipboard to paste blocks into other applications.

The Clipboard can only hold one selection of cut or copied blocks at atime. If you
place anew selection in the Clipboard, it overwrites whatever was already there.

>
1

2.

5.
6.

To copy or move selected blockswithin VisSim
Select the blocks.

To copy the blocks, do one of the following:
e From the toolbar, choose B2.

e  Choose Edit > Copy.

e PresscCTRL+C.

To move the blocks, do one of the following:
e From the toolbar, choose '&.

e Choose Edit > Cut.

e  PressCTRL+X.

At this point, the blocks are in the Clipboard.

Move to where you want the Clipboard contents inserted. If the locationisin a
different block diagram, use the File > Open command to open the proper block
diagram and do one of the following:

e  From thetoolbar, choose 2.

e Choose Edit > Paste.

e  PressCTRL+V.

A rectangular box appears.

Position the box where you want the Clipboard contents inserted.

Click the mouse.

If blocks and wires overlap as aresult of this procedure, you can easily reposition
them using drag-and-drop editing.



Chapter 3 Arranging Blocks

Copying blocks into other applications

Y ou can use the Copy command to copy pictures of blocks into other Windows-
based applications. Common Window elements (like title bars, control-menu boxes,
scroll bars, and minimize and maximize boxes) are not copied when you use the
Copy command.

Using the PRINT SCRN key to copy block diagrams

Y ou can alternatively press PRINT SCRN to copy a picture of the entire
VisSim window into the Clipboard. From there, you can pasteit into
another Windows-based application using the application’s paste
command.

Flipping blocks

By allowing you to flip blocks 1800, VisSim can present a more logical
representation of right-to-left signal flow. When you flip blocks, VisSim redraws all
flexWires attached to the blocks.

» Toflipablock
Select the blocks to be flipped.

1
2. Choose Edit > Flip Horizontal.
3

Click the mouse on empty screen space to unselect the blocks.

Aligning blocks vertically and horizontally

The Snap to Grid parameter under Preferences in the dialog box for the Edit >
Preferences command forces blocks to stay on an invisible grid. When you create
block diagrams where you want blocks to line up horizontally or vertically, or where
you want them to be spaced equally, activate Snap to Grid. When you move a block
with Snap to Grid active, the block isforced to the nearest grid point. Blocks that
have been inserted into your block diagram before Snap to Grid is active are also
affected by this parameter.

29



Chapter 3 Arranging Blocks

Finding and replacing blocks

30

Using the Edit menu’ s Find and Replace commands, you can search for certain
occurrences of blocks with user-defined names and text strings. These blocks
include:

e comment blocks

e compound blocks

e DDE, DDEreceive, and DDEsend blocks
e export blocks

e import blocks

e Tlabel blocks

e rtDataIn and rtbataout blocks

e variable blocks

Once you find what you' re looking for, you can have VisSim change it to something
else. VisSim searches the entire block diagram for the search item, regardless of
your current location in the diagram.

Finding blocks

When you choose the Find command, VisSim displays a dialog box you can use to
specify the block you want to find. If you want to search for variables, you can also
click on the bowN ARROW next to the Find What box and select a variable from the
entries. All variabTe blocksin the diagram are listed in the drop-down list.

Find what ~ Sl (e

T~ Match Whole Ward Only b Cancel
I™ Match Case

™ Match Variables Only Help

™ Match Yariables Definiions Only

Once VisSim finds the search item, you can make a change in the diagram and then
continue the search by choosing the Find Next button. The dialog box stays open so
you can edit the diagram. To move the dialog box out of the way, drag on itstitle
bar.



Chapter 3 Arranging Blocks

» Tofind ablock

1. Choose Edit > Find.

2. Inthe Find What box, enter the search item. If you're searching for a
variabTe, you can aso click on the DOWN ARROW next to the Find What box
and select from the variables list.

3. Select any option you want to control the search.

To Select
Find whole words and not parts of words. Find Whole Word Only box.
Find item with same capitalization as the Match Case box.

word in the Find What box.
Find only variable block names.

Find only the defining instance of a

Match Variables Only box.
Match Variable Definitions Only box.

variable; that is, the variable block
with an input connection.

4. Choose the Find Next button. When VisSim finds a match, it highlights the
block in black.

5. To cancel asearch or close the dialog box, choose the Cancel button.

Replacing blocks

Y ou use the Replace command to replace the names of the blocks you find. Y ou

specify entriesin the Replace dialog box in the same way that you do in the Find
dialog box.

Replace

Beplace

Findwhat ||

Replace with I

Replace All
I~ Match whole word only

Cancel

d115;

[~ Maich case

Toreplace a block
Choose Edit > Replace.

In the Find What box, enter the search item.

w N P Y

In the Replace With box, enter the item to replace the search item.

31



Chapter 3 Arranging Blocks

4. Select any option you want to control the search.

To Select
Find whole words and not partsof ~ Find Whole Word Only box.
words.

Find item with same capitadization =~ Match Case box.
as the word in the Find What box.

5. Choose the Find Next button. When VisSim finds amatch, it highlights the
block in black.

6. Do one of thefollowing:

To Select

Replace the block name and find The Replace button.
the next occurrence.

Change all occurrences without The Replace All button.
confirmation.

L eave the block name unchanged The Find Next button.
and find the next occurrence.

7. To cancel asearch or close the dialog box, choose the Cancel button.

Deleting blocks

When your block diagram contains blocks you no longer need, you can delete them
using the Edit > Clear command or the DEL key. When you delete blocks, all wires
attached to the deleted blocks are al so del eted.

» Toclear sdected blocks
1. Select the blocksto be cleared.

2. Choose Edit > Clear or press DEL.

32



Chapter 4

Setting Simulation Properties

The following information is covered in this chapter:

Simulation range

Simulation step size
Real-time simulations
Automatic simulation restarts
Integration algorithms

Minimum step sizes, maximum
truncation errors, and maximum
iteration counts for adaptive
integration algorithms

Setting up the simulation range

Setting up the simulation range involves choosing the start and end of the

simulation, specifying the step size of the integration algorithm, indicating whether
VisSim runs in real-time mode, and indicating whether VisSim automatically restarts
the simulation either with or without the last known system states.

P To accessthe Simulation Range options
1. Choose Simulate > Simulation Properties.

2. Click on the Range tab.

Checkpointing

Propagating integer types
Selecting frequency units
Generating random numbers

Notification messages for end-
of-simulation, incomplete
wiring, nonintegral clock,
nonintegral delay, and numeric
overflow

33



Chapter 4 Setting Simulation Properties

34

The Range sheet in the Simulation Properties dialog box appears.

Simulation Properties [ %]
Range I Integration Methodl Implicit 50Iver| Preferancesl Delaultsl

Start: E

Step Size: 0.05

End 1

[ Runin Real Time
[ Auto Restart " Rigtain State

ok I Cancel | Appl |

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

Using the Range property sheet

The Range property sheet options are:

Auto Restart: For real-time control or training neural networks, where multiple
data sets must be fed into VisSim repeatedly, you can activate Auto Restart. This
parameter restarts and runs the simulation until one of the following conditionsis
met:

e Thesignd intheerror or stop block goesto 1.
e You manually stop the simulation.

Y ou can keep track of the number of the run by wiring a $runCount variable
block into your diagram.

To retain the states of blocks each time VisSim automatically restarts a simulation,
activate the Retain States parameter, as described below. Blocks that are time based
(for example, Signal Producer blocks) are reset to their restart time. For a smooth
transition between auto-restart simulation runs, you need to remove the Signal
Producer blocks from your diagram. For instance, if your diagram contains a
sinusoid block, replace it with an integrator block with its derivative set to the
sinusoidal frequency and feed it to a sin block.

Retain States. For a smooth transition between simulation iterations, activate
Retain State. When activated, VisSim retains the states of the integrator,
stateSpace, transferFunction, and unitbDelay blocks each timeit restarts a
simulation.



Chapter 4 Setting Simulation Properties

The Retain State parameter can only be activated when Auto Restart is already
activated.

Run in Real Time: With Runin Rea Time, VisSim simulates in real-time mode,
which has the effect of retarding a simulation so that one simulation second equals
one clocked second. This mode comes in handy when a system is exhibiting rapidly
varying behavior. In real-time mode, the behavior can be slowed down and more
easily analyzed.

Typically, you use real-time mode for hardware-in-the-loop control situations. For
this, however, you also need the VisSim/Real-Time software and a PC D/A-A/D
card. The VisSim/Rea -Time driver lets you configure different analog and digital
channels and insert them into a block diagram for reading and writing.

Start/End: Using Start and End, you can set independent variables that indicate
when VisSim starts and stops a simulation, as well as when VisSim starts and stops
logging data points in the Signal Consumer blocks wired into the block diagram.

Y ou can also set defaults for the start and end, as described on page 41.

Step Size: The step sizeisthe fundamenta unit of integration. It indicates the
interval at which the integration algorithm computes the integral of the input
function and generates a data point in the Signal Consumer blocks wired into the
block diagram. Y ou specify the step size in the Step Size box. The default is 0.05.

For adaptive integration methods (adaptive Runge Kutta 5" order and adaptive
Bulirsh-Stoer), you can also specify a minimum step size, as described on page 38.

Furthermore, you can also set a default step size for the non-adaptive integration
methods, as described on page 41.

Setting up an integration method

Setting up the integration algorithm involves choosing the algorithm, and, if you
choose an adaptive algorithm, specifying the minimum step size, error tolerance, and
iteration count.

P Toaccesstheintegration method options
1. Choose Simulate > Simulation Properties.

2. Click on the Integration Method tab.

35



Chapter 4 Setting Simulation Properties

36

The Integration Method sheet in the Simulation Properties dialog box appears.

Simulation Properties

Range Integration Method |Implicit50|ver| Pleferancesl Defaults'

" Euler

" Runge Kutta 4th order
" Adaptive Runge Kutta Sth order
" Adaptive Bulish-Stoer
" Backward Euler [Stiff)

Min Step Size: 1e-006
2% Truncation Errar. 1e-005
tax Jteration Count: g

oK I Cancel | Al |

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

Using the Integration Method property sheet

VisSim provides seven integration algorithms — Euler, trapezoidal, Runge K utta 2™
order, Runge K utta 4™ order, adaptive Runge K utta 5" order, adaptive Bulirsh-Stoer,
and backward Euler (Stiff) — of varying numerical accuracy for the numerical
integration of differential and difference equations.

Each algorithm provides a numerical approximation to continuous integration. The
approximation is based on a trade-off between speed of execution and accuracy.
Generally speaking, the more complex agorithms yield more stable and numerically
correct results; however, they also take longer to run.

For example, the integration of the absolute value of a sinusoid signal with a
frequency of 0.2 Hz is plotted below. The output of the abs block is a sequence of
sinusoid positive half-cycles with afrequency of 0.4 Hz. Since the simulation range
isfrom 0 to 5 seconds, the output of the integrator block isthe estimate area
under the curve of two positive half-cycles.



Chapter 4 Setting Simulation Properties

+Badhward Euler
*+Runge Kutta ath ordar .
A0- y *

— — Trapezoidal R 2
:

— Euler
Sinusoid
(0.2 Hz)

Time (sec)

While the differences due to the integration algorithms are negligible for this
example, more dramatic differences can be observed when comparing simulation
methods in diagrams containing differential equations.

A good rule of thumb, then, isto use the least complicated algorithm that provides
stable and correct results. To achieve this, start with the most complex integration
algorithm and work backwards to simpler algorithms until you see a noticeable
change in your results.

Setting a default integration algorithm

If you plan on using a particular integration algorithm alot, you can set it as
the default, as described on page 41.

The Integration Method property sheet options are:

Euler: Evaluates once per simulation time step. This method is least affected by
singularities, and is fastest for moderate step sizes.

Trapezoidal: Evaluates twice per simulation time step.

Runge Kutta 2d order: Obtains second order accuracy. This method uses a
midpoint step derivative to calculate the fina integration value. Specify the length of
the step in the Step Size box.

37



Chapter 4 Setting Simulation Properties

Runge Kutta 4th order: Obtainsfourth order accuracy. This method evaluates the
derivative four times at each time step: once at the initia point, twice at sample
midpoints, and once at a sample endpoint. The final integration value is then derived
based on these derivatives.

Adaptive Runge Kutta 5th order: Obtainsfifth order accuracy. This agorithm
automatically takes small step sizes through discontinuities in the input function and
large strides through smooth functions.

Adaptive Bulirsh-Stoer: Usesrational polynomials to extrapolate a series of
substeps to afinal estimate. This algorithm is highly accurate for smooth functions.

Backward Euler (Stiff): Obtains efficiency for systems with high and low
frequencies. The other algorithms would require small step sizes to maintain
stability.

Min Step Size: The adaptive Runge Kutta 5" order and adaptive Bulirsh-Stoer
integration algorithms exert more control over the accuracy of the solution by letting
you specify aminimum step size. The step size is continually adjusted in order to
meet the error tolerance and iteration count criteria; however, it is never reduced
below the minimum step size. Thus, inaccurate results may be produced if the
minimum step sizeistoo large, the error tolerance istoo large, or the iteration count
istoo small.

The default value for the minimum step size is 1e-006.

Max Truncation Error: When you choose an adaptive integration agorithm, you
can specify the maximum error between the results of two successive adaptive
iterations. VisSim uses the truncation error to determine the adaptive step size. The
larger the error you' re willing to tolerate, the larger the step size. The default value
for the maximum truncation error is 1e-005.

Max Iteration Count: When you choose an adaptive integration algorithm, you
can also specify the maximum number of times the integration algorithm will vary
its time step attempting to meet the maximum truncation error criterion. The default
value for the maximum iteration count is 5.

Setting up simulation preferences

38

P To accessthe preferences options
1. Choose Simulate > Simulation Properties.

2. Click on the Preferences tab.



Chapter 4 Setting Simulation Properties

The Preferences property sheet in the Simulation Properties dialog box appears.

Simulation Properties
Haﬂgel Integration Melhudl Implicit Solver  Preferences IDefaullsl

¥ Check Connections

¥ Holify Sirnulation End I~ Ww/ain Numeric Qverflow
™ Wwam Nonintegral Clack [" Propagate Integer Types
[~ “wamn Monintegral Delay ™ Raise Realtime Priority

Frequency Units
Random Seed: (0
andom e * Radians/sec
 Hertz

Ok I Cancel | Apnl | Help |

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

Using the Preferences property sheet

The Preferences property sheet provides options for checking for unconnected
blocks, checkpointing a simulation, selecting the frequency units, and more. The
property sheet options are:

Check Connections: Warns you at the start of asimulation if the diagram contains
unconnected blocks. Unconnected blocks are highlighted in red. A Warning dialog
box identifies the unconnected input tab and provides two choices:

e Abort or Retry Finishes checking the diagram and then stops the smulation.
e |gnore Finisheschecking the diagram and then completes the simulation.

Checkpoint State: Saves atemporary copy of your block diagram “asis’ at the
time you stopped the simulation. To do so, Checkpoint States must be activated
before you begin the ssimulation.

If you activated Checkpoint States, VisSim saves the current values of all system
parameters and block outputs, and elapsed simulation time when you stop the
simulation. If you close the block diagram and then re-open it, you can continue the
simulation from where you left off.

Checkpointing is useful for long simulations because it allows you to stop and save a
simulation in the event that you must shut down your computer for alengthy period
of time.

Frequency Units. Sets the frequency units to either radians per second or hertz.

39



Chapter 4 Setting Simulation Properties

40

Notify Simulation End: Broadcasts an “End of Simulation” message to your
computer when the simulation completes.

Propagate I nteger Types. Uses C semantics to propagate integer data types. For
example, if you add two integers, the result is an integer value.

Raise Real-TimePriority: Givesyour process the higher priority to let you achieve
reliable real-time sampling without interruptions from other processes running
simultaneously. This option is for real-time control applications.

Random Seed: Generates numbers by arandom process. The gaussian and
uniform blocks are affected by this option. That is, the numbers exiting these
blocks are derived from the value of Random Seed.

Typically, you use Random Seed when an input is required to be unpredictable. For
example, when modeling the descent path of an airplane, it isimpossible to predict

the force or direction of the wind. Consequently, you represent it as a function of a

random number.

The value of Random Seed ranges from 0 to 65,536. The default is 0.

Altering the sequence of generated random numbers

VisSim generates the sequence of random numbers for each simulation
differently depending upon whether the Auto Restart parameter in the dialog
box for the Simulate menu’s Simulation Setup command is activated. When
Auto Restart is on, VisSim generates a new sequence of random numbers for
each simulation. Conversely, when it’ s turned off, VisSim generates the
same sequence of random numbers for each simulation. To change the
sequence, you must explicitly enter a new Random Seed value at the start of
the simulation.

Warn Nonintegral Clock: Warnsyou if apulseis chosen that is not an integral
multiple of the simulation step size. This option should always be activated;
otherwise, asimulation that inaccurately represents the system you’ re modeling may
go undetected.

Warn Nonintegral Delay: Warnsyou if adelay is chosen that is not an integral
multiple of the simulation step size. This option should always be activated;
otherwise, a simulation that inaccurately represents the system you’' re modeling may
go undetected.

Warn Numeric Overflow: Warnsyou if a convert block causes data truncation
resulting in the value loosing precision.



Chapter 4 Setting Simulation Properties

Setting simulation defaults

Y ou can specify default settings for the range, integration algorithm, and fixed step
size for non-adaptive integration algorithms that are in effect whenever you create a
new block diagram or start anew VisSim session.

P Toset simulation defaults
1. Choose Simulate > Simulation Properties.

2. Click on the Defaults tab.
The Default property sheet in the Simulation Properties dialog box appears.

Simulation Properties | %]
Hangel Integration Melhudl Imphc\lSUIverI Preferences  Defaults |

Integration Method.

Stark:

Step Size:
End:

(1] 4 I Cancel | Aoply |

3. Make the selections you want to put into effect.

4. Click onthe OK button, or press ENTER.

4



Chapter 5

Simulating Block Diagrams

The following information is covered in this chapter:
e Typesof system smulations

e Controlling a simulation with Simulate menu commands, toolbar buttons, and
the Control Panel

e Dynamically modifying signal values
e Probing signal values

e Trimming asystem

e Resetting error conditions

e  Snapping system states

e Troubleshooting asimulation

Simulation basics

VisSim can simulate linear, nonlinear, continuous, and discrete systems. VisSim can
also simulate systems containing both continuous and discrete transfer functions, as
well as systems containing multi-rate sampling for discrete transfer functions.

When you initiate a simulation, VisSim first evaluates Signal Producer blocks, like
consts and ramps, then sends the data to intermediate blocks that have both inputs
and outputs, like gains and summingJunctions. Lastly, it sends datato Signal
Consumer blocks that have only inputs, such as pTots and meters.

43



Chapter 5 Simulating Block Diagrams

VisSim simulates a system according to:

e Simulation parameters set in the dialog box for the Simulate > Simulation
Properties command

e |nitial conditions for the system set in the applicable blocks

If the status bar is turned on, VisSim displays current settings for the simulation
range, step size, elapsed simulation time, integration algorithm, and implicit solver.

Continuous system simulation

Because integration is a more numerically stable operation than differentiation, you
need to transform your ordinary differential equations into onesthat use integration
operators.

To enter an ordinary differential equation in VisSim, first algebraically solve the
equation for the highest derivative. Then, in VisSim, insert the number of
integrator blocksthat equals the order of the highest derivative. Most continuous
systems contain one or more differential equations. For example, if you're solving a
third order differential equation, insert three integrator blocks and supply the
equation for the highest order derivative as input to the first integrator block. The
output of the first integrator is:

d"x
dt n-1

which isthe next lower order derivative. The output of the second integrator block
is:

d"2x
dtn—2

and so on. The outputs of the lower order derivatives can be fed back into the
calculation of the highest derivative.

44



Chapter 5 Simulating Block Diagrams

Simulating a spring-damper arm

The following example steps you through the process of converting a second order
differential equation into VisSim block diagram form. This example involves the
ubiquitous damped harmonic oscillator, where amass M is suspended from the
ceiling by a spring-damper arm. The massis attracted back toward the origin by an
elastic restoring force proportional to its vertical displacement and is damped by an
opposing force that acts in proportion to its vel ocity.

Where:
K= spring stiffness
B = spring damping
M = mass
x = vertical displacement

Based on Newton’s Second Law, the definition of the equation of motion for the
damped harmonic oscillator is:

2
MIX_ _kx- B
dt dt
where;
2
% = acceleration

dx .
— = veocit
it y

Because integration is inherently more numerically stable than differentiation, the
equation must be expressed in terms of integrals. By definition of the derivative:

dx  (td®x
T 0?+ v(0)

and

tdx
X = Joa +x(0)

where;

v(0) =initial velocity of the mass

x(0) = initial starting position of the mass

45



Chapter 5 Simulating Block Diagrams

46

Employing 1/s as the operator for integration, and making theinitial conditions
implicit in /s, yields the following relationship:

(). 3o
Csldt ) &2\ dt?

The relationship can be expressed in VisSim block diagram form as:

d2w/dt2
> p1/5

A more concise representation of thisrelationship is:

P—p d2w/di2 W 1/S

Thethree variable blocks hold the quantities d®/dt?, dx/dt, and x at each instant of
time. Thevariable blocks are actually extraneous, because the wires alone can
carry the data forward to the next block.

Returning to the original equation of motion and solving for the acceleration yields:

2
M:i —KX—B%
d? M dt

To model this system in VisSim, wire the outputs of the x and dx/dt variable
blocks through two gain blocks (which represent K and B) and into a
summingJunction block, with inputs negated. By dividing the output of the
summingJunction block by M (which is represented by a constant block), you
produce d>/dt?. Letting K =5, B = 1, and M = 10, for example, resultsin the
diagram shown on the next page.



Chapter 5 Simulating Block Diagrams

= |2nd Order Damped Harmonigq «

-5

2 P T R R SR R T R
0 2 4 & 8 1012 14 16 158 20
Tirne fzec)

This diagram represents a closed-loop system from which the values for position,
velocity, and/or acceleration can be displayed in aplot block, as was done here.
Theinitial conditions of starting position x(0) and velocity v(0) of M are specified
within the integrator blocks preceding the respective variable blocks.

Letting x(0) = 0 and v(0) = 1, and setting the simulation range from 0 to 20 and the
step size to 0.05 yields the following results:

= [2nd Order Damped Harmonigq «

S Vel ity

Fozition

2 P S S S R S N
02 4 & & 1012 14 1615 20
Tirve 2=

Note that the characteristic decay that is observed depends on the parameters M, K,
and B. Different values for these quantities and initial conditions can be entered into
the appropriate blocks to simulate any system.

Y ou can simplify the diagram by replacing the variab1e blocks that denote X,
dx/dt, and d*x/dt® with optional T1abe1 blocks.

a7



Chapter 5 Simulating Block Diagrams

48

= |2nd Order Damped Harmonid «

k4
¥

15+ Weloe ity

Fosition

- 15 e 105 .
—{1} 5
: of
i b -5
(7]
H

2 P R TR RN TR R R
BT 0 02 4 & 8 10012 14 1615 20

—— {5 le— Tirme fsec]

K

This disgram of a 2nd order
Hifferential equatian was c reated by
k.. Darnell & A. Corbeil.

« [+

Other physical effects can now be added, such as static and dliding friction, or
external driving forces.

A coupled system can also be modeled by interconnecting two separate block
diagrams. This permits extremely complex systems to be modeled without the need
for a closed mathematical solution.

Entering continuous time transfer functions

A transfer function is aratio of polynomialsin the Laplacian s operator that models
theratio of the output signals divided by the input signals. There are two ways to
enter atransfer function in VisSim. The more common method is viathe
transferFunction block, which you use when entering coefficients as numeric
constants.

When the coefficients are polynomial constants, begin by defining the transfer
function in operator notation. The transfer function should be proper; that is, the
highest degree of the denominator polynomial m must be greater or equal to that of
the numerator n. The general transfer function representation is:

N(s) ans"+an_1q sn_l...+a1 s+ag

D(S)  bys™+ bm_lsm_l...+bls+ b




Chapter 5 Simulating Block Diagrams

Y ou represent thisin VisSim as follows:

-

k4
1]
=1

-

-

This diagram represents the condition in which the numerator and denominator
degrees are equal (M= n). When the numerator is of adegree |less than the
denominator, the output paths are removed from the left. For example, if nistwo
less than m, the a,and a, ; output paths would be removed.

Note also that for each K" polynomial term, you add an integrator and a
corresponding a,, b, set of gains flow to the upper and lower summingJunction
blocks in the diagram.

The second degree transfer function is:
N(s) as?+bs+c
D(9 ds+es+f

The diagram for this transfer function is:

49



Chapter 5 Simulating Block Diagrams

30

Applying an external driving force to a spring-damper arm

By modifying the damped harmonic oscillator, created earlier, to include an externa
driving force f(t), you can create a system that contains atransfer function. An
illustration of the modified system is shown below:

K =B
Where:
$x K= spring stiffness
B = spring damping
M = mass
'{” x = vertical displacement

? f(t) = driving force

In this system, avertical draft is produced by a strong fan positioned below the mass.
This driving force sustains the motion of the damped oscillator and represents an
input to the system. The output is the instantaneous vel ocity v of the mass. To derive
the transfer function for this simple system, you will use the Laplace transform. The
modified equation of motion for this systemis:

d?x dx

M— =— Kx— B—+ f(t

Accounting for non-zero initial conditions, the Laplace transform becomes:

&
dt

Regrouping the equation yields:

Ms?x(s)— Msx(0) - (0) = — Kx(s)— Bsx(s)+ Bx(0) + F(s)

X(5)(Ms? + Bs+ K )~ x(0)(Ms— B) - %(O)M “F(9)

Transfer function representation requires al initial conditions be equal to zero,
specificaly:

X(0) = %(o) -0

The equation reduces to:

x(s)(Ms2 +Bs+ K): F(s)



Chapter 5 Simulating Block Diagrams

whose transfer function is:

X 1
F(s) Ms?+Bs+K

Since velocity rather than displacement is the desired output, the substitution:
V(s)=sXx(s)
is made to produce the transfer function:

V(s _ s
F(s) Ms?+Bs+K

The denominator remains unchanged; however, the numerator coefficients are
different. The block diagram becomes:

The non-zero initial conditions can be easily included by specifying their values on
each of thetwo integrator blocks. For example, suppose that the spring was
initially stretched one inch. Aninitia condition of one would be placed on the
rightmost integrator. Assuming an initial velocity of zero, the initial condition on
the leftmost integrator would still be zero.

Discrete time system simulation

Y ou can simulate models of discrete time systems using unitbelay,
transferFunction, and stateSpace blocks. These discrete blocks have built-in
samplers on their inputs and zero-order holds on their outputs.

Y ou set the sample time of atransferrFunction and stateSpace blocksin the
dT parameters of their Properties dialog boxes. The dT parameter sets the sample
time at which the blocks' states are updated. The unitbelay block has a Boolean
clock at itsinput to set the sample time.

51



Chapter 5 Simulating Block Diagrams

92

Simulating multi-rate systems: Discrete time systemsin VisSim can be formulated
as multi-rate systems. This means that a single model can contain blocks with
different sampling rates. This capability is particularly useful in the simulation of
discrete Multiple-1nput-Multiple-Output (MIMO) systems. For a system with
significant differencesin its time constants in some natural modes or control loops,
you can achieve improved performance by sampling different subsystems at
different rates.

To specify multi-rate subsystems, use different sample times in the corresponding
discrete transferFunction or discrete stateSpace blocks. The simulation time
step must be set to avaue equa to or less than the smallest value of all the sample
times used in the discrete blocks.

Entering difference equations

A difference equation (DE) is similar to an ordinary differential equation, but instead
of continuous functions, functionsin a difference equation take on values only at
discrete instances of time. Just as the operator in an ordinary differential equation is
the integrator, the operator in the difference equation is the unit delay.

To understand how to represent a difference equation in block diagram form,
consider the following example of the trapezoidal integration algorithm in difference
equation form:

Yo = Yer + 2R+ Rey) (R ; Rcs)
where:

R = input

Y = output

Here, dtisthe fixed discrete update time and the subscript k and k-1 denotetime in
integer multiples of dt. Thus:

R = R(kdt)
and

Re_1 = R((k—1dt)



Chapter 5 Simulating Block Diagrams

A DE is converted to atransfer function in terms of the Z operator by replacing
occurrences of F_, with F (z‘” ) Thus:

Y > Y)Y

Yq o Y(z)

R~ R(z°)->R

Ry — R(z‘l)

Performing the replacement and solving for % yields:

Y _dii+z?
R 21-z71

Since transfer functions are conventionally expressed in positive powers of z, you
must multiply the right-hand side of the equation by z/z to produce:

To create aVisSim block diagram, the procedureis similar to that used for
continuous time transfer functions. However, the unitbelay block replacesthe
integrator block. The resulting block diagram becomes:

The continuous input signal, R, is made a discrete function by passing it through a
sampleHold block to effectively sample and hold its value every time the trigger is
activated. The trigger is activated every dt seconds using the pulseTrain block,
and must be fed into every unitbelay block to synchronize the VisSim data flow.

53



Chapter 5 Simulating Block Diagrams

Hybrid system simulation

In VisSim, discrete and continuous time blocks can be used together in a model.
Such systems are called hybrid systems. In hybrid systems, the outputs of the
discrete blocks are held constant between successive sample times, and updated at
times that correspond to the specified discrete sample time. The outputs of
continuous blocks are updated at every time step. Similarly, the inputs to the discrete
blocks are updated at times that correspond to the discrete time interval while the
inputs to continuous blocks are updated at every time step.

Hybrid systems can also be multi-rate. To specify multi-rate subsystems, use
different sample times in the corresponding discrete transferFunction or discrete
statesSpace blocks. For hybrid system simulation, the simulation time-step must be
set to avalue equal to or less than the smallest value of al the sampletimesused in
the discrete blocks.

Controlling a simulation

54

There are three ways to control a simulation:

e Using the Simulate menu Go, Stop, Continue, and Reset commands or
corresponding toolbar buttons

e Using the simulation Control Panel

e  Specifying simulation parameters on the VisSim command line, as described on
page 263

Each way provides the same level of interactive control over the simulation. For
short simulations, however, you may have to wire a stop block into the diagram if
you plan on stopping and single stepping a simulation that has been started from the
command line.

The Control Panel
The Control Panel provides fast and easy interactive control over a simulation.

Simulation Control

Sim Time: 0
Real Time: 0

Go, Stop, and Cont pushbuttons: These buttons allow you to start, stop, and
continue asimulation. They are equivalent to the Go, Stop, and Continue commands
in the Simulate menu, and the ', "Il and # buttons in the toolbar.



Chapter 5 Simulating Block Diagrams

Step pushbutton: This button alows you to single-step through a simulation. Each
time you press the Step pushbutton, the simulation advances one time step. The Step
pushbutton is equivalent to ' button in the toolbar.

Reset pushbutton: When you’ re single-stepping or proceeding normally through a
simulation, the Go pushbutton is replaced with the Reset pushbutton. If you click on
Reset, VisSim resets the system to itsinitial conditions.

» Toactivatethe Control Panel
e Choose View > Control Panel.

Starting a simulation

» Tostart asimulation
e Do one of thefollowing:

e From thetoolbar, choose ' F.
e From the Control Panel, press the Go pushbutton.

e Choose Simulate > Go command.

Stopping a simulation
P Tostop asimulation
e Do one of the following:

e  From the toolbar, choose "Il
e From the Control Panel, press the Stop pushbutton.
e Choose Simulate > Stop.

Continuing a simulation
» Tocontinueasimulation
e Do one of thefollowing:
e  From the toolbar, choose B
e From the Control Panel, press the Cont pushbutton.

e  Choose Simulate > Continue.

55



Chapter 5 Simulating Block Diagrams

Single-stepping a simulation
» Tosinglestep
e Do one of the following:

e From thetoolbar, choose *°.

e From the Control Panel, press the Step pushbutton.

Resetting a simulation to initial conditions

» Toreset
e Do one of thefollowing:

e From the Control Panel, pressthe Reset pushbutton.
e  Choose Simulate > Reset.

More on controlling a simulation

Dynamically modifying signal values

Y ou can dynamically modify asignal value during a simulation using the slider
block. This block lets you set upper and lower bounds in one and 10 percent
increments.

» Tomodify asignal value
Insert and wirea s1ider block into your diagram.

1
2. Using the scroll bar, adjust the value to be applied to the signal.
3

Asthe simulation proceeds, re-adjust the value of the s1ider block as
necessary.

Probing signal values

There are two ways to probe signal values at each time step of a simulation:

ToO Do this

Monitor signals entering or exiting a Hold down the right mouse button over a
specific block connector tab on the block.

Monitor signal values emitted from Wire display blocksto the output connector
multiple blocks simultaneously tabs of the blocks.

96



Chapter 5 Simulating Block Diagrams

Trimming a system

VisSim’'sunknown and constraint blocks can be used to trim asimulation to
begin at adesired non-zero point. Thistechnique is especialy useful for slow-
running simulations in which the interesting region lies later on in the trgjectory. By
trimming the conditions at the interesting region, you save time.

Theinitial condition of the integrator can be set externally using a
summingJunction block. (The actual initial condition on the integrator is set to 0.)
The goal isto drive the derivative signal to zero on the first pass of the ssimulation by
adjusting the value of the unknown blocks, which is the integrator initial condition.

Resetting error conditions

If asimulation fails as aresult of amath fault — for example, a negative argument to
alog function — VisSim displays adialog box stating the nature of the error and
highlights the offending block in red. To reset the error condition, point to the
offending block and click the right mouse button. If the offending block is
encapsulated within one or more compound blocks, each compound block is also
highlighted in red. Note that you'll have to drill into highlighted compound blocksto
find the offending block.

If multiple blocks contain errors, use the Edit > Clear Errors command to clear all
the errors.

Snapping system states

When you snap states, VisSim overwrites the initial conditions of unitbelay
blocks, integrator blocks, resetintegrator, TimitedIntegrator,
stateSpace, and transferFunction blockswith their current output states, and
renderstheir initial conditions irretrievable. Snapping states is useful when you want
to run asimulation to a stable operating point and, from there, experiment with the
system.

State values are saved in memory; to save them to disk, use the File > Save
command.

» Tosnap state valuesto memory
1. Runthesimulation to a specific point of interest.

2. Choose Simulate > Snap States.

57



Chapter 5 Simulating Block Diagrams

Troubleshooting

98

What should | do when the input function to an integrator block contains
discontinuities?

If the input function to an integrator block contains discontinuities, use the
adaptive Runge Kutta 5th order or adaptive Bulirsh-Stoer integration agorithm.

How do I stabilize rapidly oscillating behavior?

A simulation that exhibits an oscillating behavior that increases rapidly in amplitude
points to unstabl e integration settings. When this occurs, decrease the integration
step size or switch to an integration algorithm that yields more accurate results and
produces less accumulated errors over the course of the simulation, such asthe
adaptive Runge Kutta 5th order or adaptive Bulirsh-Stoer integration agorithm.

For highly nonlinear systems or stiff systems, you should use backward Euler.

How can | speed up my simulations?

When speed is afactor, disconnect all Signal Consumer blocks at the currently
displayed level.

Is there an easy way to check for complete wiring?

A faulty simulation can be the result of incomplete wiring. VisSim automatically
assigns zeros to all unsatisfied connector tabs (except on variable and * blocks)
before it begins asimulation. To ensure that all blocks are fully connected, activate
Check Connections in the dialog box for the Simulate > Preferences command.
When this parameter is activated, VisSim warns you at the start of the simulation if
the diagram contains unconnected blocks.

Why is my feedback loop causing errors?

If you create a feedback |oop that does not contain integration or delay blocks, it is
referred to as an algebraic loop. VisSim is not equipped to solve algebraic loops.
Hence, during simulation, VisSim flags the loop-head block in red and issues a
notification message. To fix the error, rework the loop to introduce a delay.

If you aretrying to solve an implicit equation, see Chapter 7 “ Solving Implicit
Equations,” for information on using unknown and constraint blocks.



Chapter 6

Plots

Viewing Simulations

The following information is covered in this chapter:

Displaying simulation datain customizable plots
Displaying simulation datain customizable strip charts
Using histograms, bar graphs, and needle gauges
Creating animation

The pTot block displays datain atwo-dimensional time domain plot. You can
customize the plot and control how datais presented through the Plotting Properties
dialog box for the pTot block.

Choose between XY or frequency domain
Select logarithmic scaling, fixed axis bounds, or atime axis scale

Display signal traces as individual data points, line segments, or stepped line
segments

Overlay signal traces with geometric markers

Specify the number of data points to plot

59



Chapter 6 Viewing Simulations

e Usecrosshairs and grid lines to determine data point coordinates

e Overlap plots
Y ou can also save simulation datato filein .DAT, .M, .MAT, and .WAY formats.

Basic time domain plots

When you wireaplot block into your diagram and run a simulation, the simulation
dataisinitially presented in time domain. All the signals are plotted on the Y axis;
the X axis represents time. As data points arrive to be plotted, VisSim dynamically
rescales plot bounds and connects the data points with line segments.

Bouncing Ball

- r Ball position

Airfriction

Time (sec)

In the above plot, ball position and air friction are displayed as functions of time.
The peak ball position follows an exponential decay, governed by air viscosity. The
signals are distinguished by line patterns, afeature the plot block automatically
performs when displaying or printing on monochrome devices. To make the plot
more meaningful, signal labels and a title were also added.

Sizing a plot block

Y ou might want to change the size or shape of aplot block for better viewing. You
can expand it to full screen size with the Maximize button in the upper right-hand
corner of the block, or you can drag the plot’s borders or cornersto adjust its size.



Chapter 6 Viewing Simulations

Zooming

Y ou can zoom in on data points to view them at a magnified size and zoom back out
to display them at their normal size. Y ou can zoom in several timesin arow for
greater magnification.

If the areayou’ re zooming in on does not contain at least one data point, the
magnified areawill be blank.

» Tozoomin
1. Point to one corner of the area you want to select.

2. Toanchor the corner, hold down the mouse button and CTRL key
simultaneously.

3. Drag the pointer until the box encloses the area you want to magnify. A status
box in the lower left-hand corner of the plot displays the pointer position.

4. Release the mouse button and CTRL key.
» Tozoom out
e Hold down the cTRL key and click the right mouse button over the plot.

Changing plot properties

The Plot Properties dialog box controls how simulation data is presented.

P Toaccessthedialog box
Choose Edit > Block Properties.

1
2. Click the mouse over the plot block.
3

Select the plotting parameters. (See the descriptions below for information about
each parameter.)

4. Click onthe OK button, or press ENTER.

Options property sheet

The Option property sheet lets you choose between XY and frequency domain plots;
select logarithmic scaling, fixed axis bounds, or atime axis scale; display signal
traces asindividual data points, line segments, or stepped line segments; and more.

61



Chapter 6 Viewing Simulations

62

Plot Propeities [ %]
Dptions | Labels' Az I Apnearance'
I” FredBounds I Logit
™ Frequency Domain I Log¥
= | Tiuneate FRT detata 25 T Decibel T
™ Ouver Plat I™ Giid Lines
Plot Cout: 4

I Geometric Markers

Marker Count: |10 Bead Coordinates.

B e ™ Retain Coordinates

I~ 5 Plat % axis: 1 v[

I Multiple 3 haces LClear Owverplat |

Line Type: I\ine ﬂ Save Data ta File
Max Plotted Points: |512

Aitual Point Count: lu—
Ok I Cancel | Ll | Help |

Fixed Bounds. Specifiesthe region of the plot you want to view by letting you
select the plotting bounds. When Fixed Bounds is activated, VisSim uses the values
for the X Upper Bound, X Lower Bound, Y Upper Bound, and Y Lower Bound
parametersin the Axis property sheet.

Frequency Domain: Obtains the frequency power spectrum through the use of the
Fast Fourier Transform (FFT) algorithm.

Do not obtain frequency power spectrum data until after you have run a simulation.
If you halt the simulation prematurely, the fidelity of the FFT is diminished.

Unexpected peaks

If your frequency domain plot produces unexpected peaks, check the
simulation step size to verify that your sampling rate is adequate for
obtaining accurate results. Then, based on the simulation step size and
range, check the Plotted Points parameter to verify that you are indeed
plotting each time step.

Truncate FFT Data To 2"n: When activated, this option truncates data down to
the nearest power of 2. If you do not activate this option, the data buffer is padded
with zeros to round up to the nearest power of 2.

This option can be turned on only when the Frequency Domain option is activated.

Over Plot, Plot Count, and Clear Overplot: When activated, Over Plot displays
the results of multiple simulation runsin asingle plot. This alows for better insight
into how small changes can affect overall system performance.

Y ou can select the number of overlapping plots by entering a number into the Plot
Count box. To clear all signal traces from aplot, click on the Clear Overplot button.



Chapter 6 Viewing Simulations

Geometric Markersand Marker Count: When activated, Geometric Markers
overlays signal traces with geometric markers (squares, diamonds, circles, and
triangles). These markers are particularly useful for monochrome displays and
printers.

By default, VisSim overlays each signal trace with 10 markers; however, if thisis
not satisfactory, you can enter a new number in the Marker Count box.

External Trigger: Determines whether VisSim displays simulation datain the plot
based on the value of an external trigger. When activated, External Trigger causes
VisSim to place around input connector on the p1ot block. When signal values
entering the external trigger are 1, smulation data is plotted; when signal values
entering the external trigger are 0, simulation data is not plotted.

XY Plot and X Axis. Together, XY Plot and X Axislet you use oneinput signal to
represent X coordinate generation. As time advances, the remaining input signals are
plotted relative to the X-axis signal.

= Bouncing Ball o

- -~ Eall position
18

i\

14 N,
A kS
’; " "
3

>

Air friction

Inthe XY plot above, ball position is plotted against air friction. At time 0, the ball
positionisat 2 and air friction isat 0. Over the course of the simulation, the ball
position moves counter-clockwise, following a three-sided decaying cycle.

» To specify an XY plot
1. Activatethe XY Plot parameter.

2. Under the X Axis parameter, choose the input signal to be used for X
coordinate generation: 1 represents the input signal attached to the top input
connector tab on the pTot block, 2 represents the input signal attached to
the second to the top input connector tab on the pTot block, and so on.

3. Click on the OK button, or press ENTER.

63



Chapter 6 Viewing Simulations

64

P Tolabel the X axison an XY plot

Inan XY plot, VisSim automatically labels the X axis with the label for the
input signal used for X coordinate generation. For example, if you activate XY
Plot and choose 2 under X Axis, VisSim uses the label assigned to input

signal 2.

1. Click onthe Labels tab.

2. Enter alabel for theinput signa you chose to be used for X coordinate
generation. The Trace 1 box correspondsto 1 in the X Axis parameter, the
Trace 2 box correspondsto 2 in the X Axis parameter, and so on.

3. Click onthe OK button, or press ENTER.

Multiple XY Traces: Createstwo independent XY plots, which alowstwo signals
to be superimposed. The XY Plot option must be activated in order to use this
option.

Line Type: Click on the bowN ARROW and choose Point, Line, or Discrete.

e Point displays signal values asindividual data points. The primary advantage of
point plotsisthat you can see the separation of data as time advances.

e Line connects data points with solid line segments. On color displays, line
segments are keyed to the color to their corresponding input connector tab. On
monochrome displays and printers, VisSim automatically uses line patterns
(solid, dot, dash, and dot-dash) to distinguish multiple signals. Y ou may have to
lower the point count in the Plotted Points parameter to allow enough room
between data points for the pattern to be displayed. If thisis not satisfactory,
you can overlay signal traces with geometric markers.

o Discrete displays signal values as stepped line segments. In a discrete plot,
VisSim holdsthe Y value constant from point to point. A discrete plot is helpful
when data points are irregularly spaced and you don’t know where the curveis
accurate.

Plotted Points: Determines the smoothness and accuracy of aplot. The more data
points you plot, the smoother and more accurate the plot. However, increasing the
number of plotted data points also increases the time it takes to print and display the
plot.

The maximum number of data points that can be plotted is 128,000. For Windows
NT and Windows 95, the maximum number is 250 million.

Actual Point Count: Displaysthe number of data points plotted.

Log X and Log Y: Allow datato be plotted in logarithmic and semi-logarithmic
coordinate systems. When you specify alogarithmic or semi-logarithmic plot, you
cannot plot negative values on the log axis. Any negative value will be clipped to the
low end of the scale. When neither parameter is activated, the plot defaults to linear.



Chapter 6 Viewing Simulations

To Do this

Create a semi-logarithmic plot wherethe X Activatethe Log X parameter.
axisislogyg and the Y axisislinear

Create a semi-logarithmic plot wheretheY  ActivatetheLog Y parameter.
axisislog and the X axisislinear

Create a plot using log;o- 10930 Scales ActivatetheLog X and Log Y parameters.

Decibel Y: Rescalesthe Y axisto display the valuesin decibels.

Grid Lines: Extends grid lines from the vertical and horizontal axis coordinates.
Grid frequency — that is, the vertical and horizontal spacing of grid lines— is
controlled by the spacing of the axis coordinates. VisSim automatically establishes
reasonable axis coordinate spacing and hence controls the grid frequency.

Read Coordinates. Overlaysthe plot with a set of crosshairs and displays crosshair
position at the bottom of the plot.

When you click the left or right mouse button, VisSim freezes the crosshairs. Click
the left mouse button again to erase the crosshairs.

Save Data To File: Opensthe Select File dialog box to specify afile to which the
plot datais to be saved. Click on the bowN ARROW in the Files of Type box to
choose afile format.

Labels property sheet

The Labels property sheet lets you name your plots, label the X and Y axes, and
apply names to signd traces.

Plot Properties

Options  Labels |Axis I Appeamncel

Tite: |
Subtitle: I

» Label: [DEOEYEES]
't Label: |

Trace 1 I
Trace 2 |

Trace 3 I

Trace 4 |

0k, I Cancel Lol

65



Chapter 6 Viewing Simulations

Titleand Subtitle: The Title and Subtitle parameters let you provide names for
your plots. Titles and subtitles can be up to 80 aphanumeric characters. The title
appearsin the plot title bar; the subtitle is displayed in the top area of the plot. By
default, plots are titled Plot and have no subtitles.

X Label and Y Label: The X Label parameter specifies alabel for the X axis. To
label the X axison an XY plot, see the description of the XY Plot parameter on page
63. The Y Label parameter specifiesalabel for the Y axis.

Axislabels can contain up to 80 alphanumeric characters.

Tracel, Trace2, Trace 3, and Trace4: Let you specify labelsfor up to four input
signals. The Trace 1 box corresponds to the top input connector tab, the Trace 2 box
corresponds to the next lower tab, and so on.

Signal labels can contain up to 80 al phanumeric characters.

Axis property sheet

The Axis property sheet lets set upper and lower bounds for the X and Y axes,
choose atime scale, specify axis divisions, and more.

Plot Properties B

Dptlons' Labels Awis IADpealance|

‘' Upper Bound: |0
‘' Lower Bound: |0

# Upper Bound: |0
# Lower Bound: [0

Time Scaling: MicroSeconds ~

Retrace Options
I” Retrace Enabled
Start Time: [0
End Time: |1

' Divigions: ID Interval: |0

s Divigions

Ok I Cancel | Appl |

Y Upper Bound, Y Lower Bound, X Upper Bound, and X Lower Bound:
Specify the upper and lower bounds for the X and Y axes. These bounds are in effect
when you activate the Fixed Bounds parameter in the Options property sheet.

Time Scaling: Specifies X axis scaling in microseconds, milliseconds, seconds,
minutes, hours, and days. When you select adifferent time axis scale, VisSim re-
calculates the valuesin the X Upper Bound and X Lower Bound boxes. When you
close the dialog box, the X axisis scaled to the time you chose.



Chapter 6 Viewing Simulations

Strip charts

AxisDivisions: You can override the plot’s grid tick division by activating Fixed
Tick Count and entering values into the X Divisionsand Y Divisions boxes. The
numbers you enter indicate the number of grid ticks on each axis.

Retrace Options: Allowsyou to configure a plot as an eye diagram. Activate
Retrace Enabled and specify the desired interval in the Interval box. In the Start
Time and End Time boxes, enter the start and end times for the eye diagram. Eye
diagrams are particularly useful for analyzing digital data waveforms.

Appearance property sheet

With the Appearance property sheet, you can add color and background patternsto
your plots.

Plot Properties

Dpliunsl Labe\sl Buiz Appearance: I

||
Background...

I~ Dveride default colors

i~ Bitmap

Image...

0K | Cancel | Lappli |

Color: Click on Foreground to color the axis labels and scaling text; click on
Background to color the plotting area. Activate the Override Default Colors to
override the color specified in the View > Colors command.

Bitmap: You can specify a bitmap image background for the plotting area. Type the
file name directly into the Bitmap box or select one using |mage command button.
The specified bitmap image file overrides any background color selection.

The stripchart block displays up to four signalsin ascrolling window. You
define the display width and scrollable width of the window. To scroll back and
forth through the window, use the horizontal scroll bar at the bottom of the
stripchart block.

67



Chapter 6 Viewing Simulations

68

Y ou can customize the strip chart and control how data is presented in the following
ways:

e  Choose frequency domain strip charts.

e Seect Y axisscaling, fixed bounds, or atime axis scale.

o Digplay signal traces asindividual data points, line segments, or stepped line
segments.

e Overlay signal traces with geometric markers.
Y ou can also save simulation datato filein .DAT, .M, .MAT, and .WAV formats.

Basic time domain strip chart

Liketheplot block, astripchart block initialy displays datain the time domain.
All signalsare plotted onthe Y axis; X axis representstime. As data points arrive to
be plotted, VisSim dynamically rescales the plot bounds and connects the data points
with line segments.

Sizing a stripChart block

To change the size or shape of the stripchart block for better viewing, drag the
stripChart’s bordersor cornersto adjust its size.

Printing a stripChart block

To print just astrip chart, click on the control-menu box in the upper |eft-hand
corner of the stripchart and select the Print command. VisSim prints the strip
chart in horizontal bands, with a maximum of four bands per page. VisSim uses as
many pages as necessary to print all the data. VisSim also honors the margin settings
specified by the File > Page Setup command.

Changing stripChart properties
The Strip Chart Properties dialog box controls how simulation datais presented.

P Toaccessthedialog box
Choose Edit > Block Properties.

1
2. Click the mouse over the stripchart block.
3

Select the strip chart parameters. (See the descriptions below for information
about each parameter.)

4. Click onthe OK button, or press ENTER.



Chapter 6 Viewing Simulations

Options property sheet

The Option property sheet lets you define the display width and scrollable width of
the window; select fixed axis bounds, logarithmic Y scaling, or decibel Y scaling;
activate frequency domain plotting; enable an external trigger; display signal traces
asindividual data points, line segments, or stepped line segments; and more.

Strip Chart Properties

Options | Lahelsl Az | Appearancel

s
I Geometric Markers

Harker Count: 10
™ Extemal Trioger
Line Type: Ilme o
Plotted points: I‘\UEH

[ Log
™ Decibely
[ Grid Lines

Read Coordinates: |

" Retain Coordinates

Save Data to File |

Ok I Cancel

| Spply |

Fixed Bounds: Specifiesthe region of the strip chart you want to view by letting
you select the plotting bounds. When Fixed Bounds is activated, VisSim uses the
values for the X Upper Bound, X Lower Bound, Y Upper Bound, and Y Lower
Bound parametersin the Axis property sheet. Out-of-range signal values are clipped

to the existing strip chart bounds.

Frequency Domain: Obtains the frequency power spectrum through the use of the

Fast Fourier Transform (FFT) algorithm.

Do not obtain frequency power spectrum data until after you have run a simulation.
If you halt the simulation prematurely, the fidelity of the FFT is diminished.

Unexpected peaks

If your frequency domain plot produces unexpected peaks, check the
simulation step size to verify that your sampling rate is adequate for
obtaining accurate results. Then, based on the simulation step size and
range, check the Plotted Points parameter to verify that you are indeed
plotting each time step.

Geometric Markersand Marker Count: The Geometric Markers parameter
overlays signal traces with geometric markers (sgquares, diamonds, circles, and

69



Chapter 6 Viewing Simulations

70

triangles). These markers are particularly useful for monochrome displays and
printers.

By default, VisSim overlays each signal trace with 10 markers; however, if thisis
not satisfactory, you can change the number of markers with the Marker Count
parameter.

External Trigger: Determineswhether VisSim displays simulation datain the strip
chart based on the value of an external trigger. When activated, External Trigger
causes VisSim to place around input connector on the stripchart block. When
signal values entering the external trigger are 1, smulation datais displayed in the
strip chart; when signal values entering the external trigger are 0, simulation datais
not displayed.

Line Type: Click on the bowN ARROW and choose Point, Line, or Discrete.

e Point displays signal values asindividual data points. The primary advantage of
point plotsis that you can see the separation of data as time advances.

e Line connects data points with solid line segments. On color displays, line
segments are keyed to the color to their corresponding input connector tab. On
monochrome displays and printers, VisSim automatically uses line patterns
(solid, dot, dash, and dot-dash) to distinguish multiple signals. Y ou may haveto
lower the point count in the Plotted Points parameter to allow enough room
between data points for the pattern to be displayed. If thisis not satisfactory,
you can overlay signal traces with geometric markers.

e Discrete displays signal values as stepped line segments. In a discrete plot,
VisSim holdsthe Y value constant from point to point. A discrete plot is helpful
when data points are irregularly spaced and you don’'t know where the curveis
accurate.

Plotted Points: Determines the smoothness and accuracy of aplot. The more data
points you plot, the smoother and more accurate the plot. However, increasing the
number of plotted data points also increases the time it takes to print and display the
plot.

The maximum number of data points that can be plotted is 128,000. For
Windows NT and Windows 95, the maximum number is 250 million.

Log Y: Enablesalogarithmic Y axis. Note that you cannot plot negative values on a
log axis. Any negative valueis clipped to the low end of the scale.

Decibel Y: RescalestheY axisto display the valuesin decibels.

Grid Lines: Extends grid lines from the vertical and horizontal axis coordinates.
Grid frequency — that is, the vertical and horizontal spacing of grid lines— is
controlled by the spacing of the axis coordinates. VisSim automatically establishes
reasonable axis coordinate spacing and hence controls the grid frequency.



Chapter 6 Viewing Simulations

Read Coordinates: Overlaysthe strip chart with a set of crosshairs and displays
crosshair position at the bottom of the chart.

When you click the left or right mouse button, VisSim freezes the crosshairs. Click
the left mouse button again to erase the crosshairs.

Save Data To File: Opensthe Select File dialog box to specify afile to which the
strip chart datais to be saved. Click on the DowN ARROW in the Files of Type box to
choose afile format.

Labels property sheet

The Labels property sheet lets you name your strip charts, label the X and Y axes,
and apply names to signal traces.

Strip Chart Properties [ ]

Options  Labeks IAHiS IADpealance|

Title: I
Subtitie: |

R Tine [zec)
¥ Lahel |

Trace 1: I

Trace 2 I

Trace 3 I

Trace 4 I

(0] I Cancel | Aol |

Titleand Subtitle: The Title and Subtitle parameters let you provide names for
your strip charts. Titles and subtitles can be up to 80 alphanumeric characters. The
title appears in the plot title bar; the subtitle is displayed in the top area of the plot.
By default, plots aretitled Strip Chart and have no subtitles.

X Label and Y Label: TheX Label and Y Label parameters specify labels for the
X and Y axes. Axislabels can contain up to 80 a phanumeric characters.

Tracel, Trace2, Trace 3, and Trace4: Let you specify labelsfor up to four input
signals. The Trace 1 box corresponds to the top input connector tab, the Trace 2 box
corresponds to the next lower tab, and so on. Signal labels can contain up to 80
alphanumeric characters.

n



Chapter 6 Viewing Simulations

72

Axis property sheet

The Axis property sheet lets set upper and lower bounds for the Y axis, choose a
time scale, and specify axis divisions.

Strip Chart Properties E

Dpt\onleabeIs Bz |Appearance|

¥ Upper Bound: [
Y Lower Bound: 0

Displayed Time 25
Scrall Back Interval: 73
Time Scaling: None 'I

Az Divizions
I™ Fixed Tick Count
* Divisions: [0

¥ Divisions: ID

0k I Cancel | Lppll | Help I

Y Upper Bound and Y Lower Bound: Specify the upper and lower bounds for the
Y axes. These bounds are in effect when you activate the Fixed Bounds parameter in
the Options property sheet.

Time Scaling: Specifies X axis scaling in microseconds, milliseconds, seconds,
minutes, hours, and days. When you select adifferent time axis scale, VisSim re-
calculates the valuesin the X Upper Bound and X Lower Bound boxes. When you
close the dialog box, the X axisis scaled to the time you chose.

AxisDivisions: Y ou can override the strip chart’ s grid tick division by activating
Fixed Tick Count and entering values into the X Divisionsand Y Divisions boxes.
The numbers you enter indicate the number of grid ticks on each axis.

Displayed Time: Indicates the amount of unitsto be displayed in the strip chart
window at any given time. The default value is % of the total smulation time.

Scroll Back Interval: Indicates how much data (in X units) is saved for scrolling
through. To conserve memory, keep this value low. To retain more data points, but
use more memory, raise this value. The default value is the total smulation time.



Chapter 6 Viewing Simulations

Histograms

Appearance property sheet

With the Appearance property sheet, you can add color and background patternsto
your strip charts.

Strip Chart Properties

Dphnnsl Lahe\sl iz Appearance I

: i
Background... |

[~ Dvemide default colors

r~ Bitmap

Image:

0k, | Cancel | Lol |

Color: Click on Foreground to color the axis labels and scaling text; click on
Background to color the plotting area. Activate the Override Default Colors to
override the color specified in the View > Colors command.

Bitmap: You can specify a bitmap image background for the plotting area. Type the
file name directly into the Bitmap box or select one using |mage command button.
The specified bitmap image file overrides any background color selection.

The histogram block shows how data are distributed over the course of a
simulation. At each time step, adata point is placed in a bin that correspondsto a
specific range. Y ou can select the number of bins and the maximum and minimum
bin value for the histogram. Y ou can also select the maximum displayed bin height
or havethe histogram block dynamically rescale the bins as the data points arrive.
The bins are spaced equally between the minimum and maximum bin values.

73



Chapter 6 Viewing Simulations

14

Sizing a histogram block

Y ou might want to change the size or shape of the histogram block for better
viewing. You can expand it to full screen size with the maximize button in the upper
right-hand corner of the histogram or you can drag the histogram’ s borders or
cornersto adjust its size.

Changing histogram properties
The Histogram Properties dialog box controls how simulation datais presented.

P Toaccessthedialog box
Choose Edit > Block Properties.

1
2. Click the mouse over the histogram block.
3

Select the plotting parameters. (See the descriptions below for information about
each parameter.)

4. Click onthe OK button, or press ENTER.

Title: I

Vertical Label: |

Horizontal Label: I

Bin Count: 10 ™ Autoscale
Max Bin: 1 - Show

Out-of-Range Data

Min Bin: o]
Max Bin Height: |10
Cancel

Title: Specifies atitle for the histogram. The default title is Histogram.
Vertical Label: Specifiesavertical axislabel.
Horizontal Label: Specifies ahorizontal axis label.

Bin Count: Indicates the number of bins. If you change the bin count, the bin
values are reset. The default is 10.

Max Bin: Indicates the maximum value of the data. The default is 1.

Min Bin: Indicates the minimum value of the data. The default isO.

Max Bin Height: Indicates the maximum height of the bin. The default is 10.
Autoscale: Rescales plot when the maximum bin height is exceeded.



Chapter 6 Viewing Simulations

Show Out-Of-Range Data: Displays bins before and beyond the minimum and
maximum bins to hold out-of-range data points.

Bar and needle graphs

Themeter block displays signals in either a gauge- or bar-style display. Initialy, the
meter block appears as a gauge-style display with one input connector tab.

= =] 3 | = 10] x|
0
|

25456578891
| O Y O O A N |

Meter 1

[SEEE LN

o (4] (=) o
1 1

feter 1

Gauge display Bar display

You can display up to four signalsin ameter block.

>iﬂ =lolx]
0258 0258 0258 0258
} [ [ [ [

> Meter 1 Meter 2 Meter 3 Meter 4

VisSim displays each signal in a separate meter window. The color of the input
connector tab (red, blue, green, or yellow) corresponds to the bar (in a bar display)
or bulb (in a gauge display) of the same color. Y ou have the option of changing
these colors.

The default number of input connector tabs is one. To change the number of input
connector tabs, use the Edit > Add Connector and Edit > Remove Connector
commands.

Sizing a meter block

Y ou might want to change the size or shape of the meter block for better viewing.
Y ou can expand it to full screen size with the Maximize button in the upper right-
hand corner of themeter or you can drag themeter’s borders or corners to adjust
itssize.

75



Chapter 6 Viewing Simulations

76

Changing meter properties

The Meter Properties dialog box controls how simulation data is presented.
P Toaccessthedialog box

1. Choose Edit > Block Properties.

2. Click the mouse over the meter block.

3

Select the plotting parameters. (See the descriptions below for information about
each parameter.)

4. Click onthe OK button, or press ENTER.

Meter Properties [ %]

’rWinduw Iitle—‘

Settings for Meter

Bxis Label:  [Meter1
Upper Bound: ll—
Lower Bound: l[l—

[" Fixed Divisions: I[I

Appearance...l Signal Color... | _
OK I Cancel | Help |

Style: Switches between a bar and gauge display.

Meter #: 1, 2, 3, and 4 indicate the signal whose settings are to be examined or
changed. The text in the Axis Label, Upper Bound, and L ower Bound boxes
correspond to the selected signal.

Window Title: Indicates atitle for the meter block. Thetitle appearsin the title bar
that runs across the top of the meter block. The default title is Meter.

AxisLabel: Indicates aname for the axis on which the signal isdisplayed. Ina
gauge display, the axis label is displayed horizontally across the top of the display;
in abar display, the axis label is displayed vertically along the left-hand side of the
display.

Upper Bound and L ower Bound: Control the upper and lower bound of the meter
display. The defaults are 1 and O, respectively.
Fixed Division: Indicates the number of grid ticks.

Appearance: Opensthe Appearance dialog box. Click on Foreground to color the
axislabel and scale text; click on Background to color the plotting area. The color
you specify overrides the color specified in the View > Colors command.



Chapter 6 Viewing Simulations

Y ou can aternatively specify a bitmap image background for the plotting area. Type
the file name directly into the Bitmap box or select one using the Select Bitmap
command button. The specified bitmap image file overrides any background color
selection.

Signal Color: Opensthe Color dialog box in which to specify a color for the input
connector tab, the bulb and needle (in a gauge-style display), and the bar (in a bar-

style display).

Creating animation

Animation is a series of images that, during a simulation, creates the illusion of
movement. VisSim provides two blocks to create animations; the animate block,
for animating an image, and the 1inebraw block, for animating aline.

Animation basics

Animation occurs only when you initiate a simulation with display mode active. In
this mode, all wires are hidden, all blocks are frozen in place, and with the exception
of the interactive elements on button and s11ider blocks, block parameter values
cannot be changed.

Animation occurs only when display mode is active. Y ou activate display mode with
the View > Display Mode command. A check mark in front of the command
indicates that it is active.

Animation works by feeding signals into an animation block. The signals drive the
coordinates of the animation block, which result in motion. For example, consider
the bouncing ball animation, shown below:

Vi

The ball is represented as asingle animate block. Movement isintroduced by
changing the ball’ s x,y screen position coordinates. As the simulation progresses, the
signals entering the animate block continually update its position. The diagram
below drives the simulation of the bouncing ball.

77



Chapter 6 Viewing Simulations

*** Parameters ™

round Jevel
[55} Gravit
Elasticit
At viscosit

Ball animation

—Ball position

=

. n n
4 a 5
Time (minutes)

To create theillusion of depth, you can vary the ball’s w,h size coordinates.

Using the animate block

The animate block lets you animate an image during simulation. Animation occurs

through movement and changes in the size or appearance of the image.

The Animate Properties dialog box controls how animation data is presented.

P Toaccessthe dialog box

Choose Edit > Block Properties.

1
2. Click the mouse over the animate block.
3

Select the animation parameters. (See the descriptions below for information

about each parameter.)

4. Click onthe OK button, or press ENTER.

Mumber of States [1 - 16

Bitrap:

States:
state 1

-
state 2 LI

Image...
File: Mame:

™ Leave Trail on Motion

oK I Cancel | Help |

78



Chapter 6 Viewing Simulations

Determines image

.
i
X, Y screen coordinates ’:-".p animate

Width and height <

screen coordinates

Applying pictures

The pictures you apply to an animate block must bein bitmap file format (.BMP).
VisSim supports Windows-formatted bitmaps with up to 256 colors.

» Toapply picturesto an animate block

1. Inthe Number of Images box, enter then number of pictures to be applied to the
block. Y ou can have up to 16 different pictures

2. Inthe States box, select state 0.
3. Do one of the following:

e Click on the Associate Bitmap command button. VisSim displays the File
Open dialog box in which you can select a.BMP file to be associated with
state 0. The .BMP file name appears in the File Name box.

¢ Inthe File Name box, enter the complete pathname of the .BMP file to be
associated with state 0.

4. Toapply asecond bitmap image to the animate block, select state 1 from the
States box and repeat step 3. Continue to repeat steps 3 and 4, incrementing the
state number, for each bitmap image you want to apply to the animate block.

5. Click on the OK button, or pressENTER.

Creating animation

Signalsfed into the animate block drive the animation during ssmulation. The
animate block acceptsfiveinput signals.

e
hp

Signalsfed into thetop input: The top input connector tab determines which
image is applied to the animate block. An input signal value of 0 causes the bitmap
image file corresponding to state 0 to be displayed; an input signal value of 1 causes
the bitmap image file corresponding to state 1 to be displayed; and so on. Signa
values entering the top input adhere to these rules:

e When asignal valueisanon-integer, the animate block truncatesit to integer
form.

79



Chapter 6 Viewing Simulations

e When asignal valueis greater than the number of set states, the animate block
uses the highest set state.

e Whenthesignal valueis negative, the animate block uses state 0.

Signalsfed into thex, y, w, and h inputs: The “x” and “y” connectors provide the
X,y screen position coordinates for the image. The input connector tabs labeled “w”
and “h" provide the width and height of the image. By varying these values, you can
create movement and depth.

The values fed into the X, y, w, and h inputs represent display pixels. The x, y
position (0,0) isthe upper left corner of the VisSim window. Positive values extend
to the right and down. For your image to appear on most video screens, keep its
position within the bounds of a VGA screen (640x480).

Y ou must perform all coordinate conversion manually. For example, the equations
that determine the position of a bouncing ball are shown below:

Air friction = kiy™2)

A wscosity |4

5|

'J b
ground level

{ Elasticity |4

[5 ]

<.
4

4+—{ ground level 4

[~]

However, before the output of the resetintegrator block can be fed into the
animate block, the position of the ball must be mapped to screen coordinates, as
shown below:

The objective is to animate the bouncing of the ball as a function of time. This
means that time is the independent variable, or the x axis. A ramp block is used to
generate time, which ranges between 0 and 1000. A gain of 0.5 is used to scale time



Chapter 6 Viewing Simulations

so that the amount of space used on the screen in the horizontal direction islimited
in the range 0 to 500 pixels.

The ball position, y, varies from 0.5 to 2 in the simulation. Thisis scaled 0 to 300
pixels by using the scaling shown. Note that the pixel location (0,0) correspondsto
the top left corner of your screen, and the largest pixel location is the bottom right
corner of your screen.

Creating atrail: To leave atrail of the picture as the simulation progresses,
activate the Leave Trail on Motion parameter.

Using the lineDraw block

The TineDbraw block lets you animate aline during simulation. Y ou define the line
by specifying two sets of x,y screen coordinate endpoints. Y ou can a so set the color,
thickness, and style of theline.

The LineDraw Properties dialog box controls how alineis animated.

P Toaccessthedialog box
1. Choose Edit > Block Properties.

2. Click the mouse over the TineDraw block. The lineDraw Properties dialog box
appesars.

LineDraw Properties [ x]

Attt

oK. |
Thickness:
= Cancel
Shle: ISD'\d vl Help

Color.. -

3. Dothefollowing:

To specify Dothis

Color Click on the Color command button and choose a color from
the color palette.

Linestyle Click on the bowN ARROW for the Style box and select astyle
from the drop down list.

Line thickness In the Thickness box, enter avalue. Values are specified in
points.

4. Click onthe OK button, or press ENTER.

81



Chapter 6 Viewing Simulations

82

Creating line motion

Likethe animate block, the Tinebraw block usesthe signal fed into itsinputs to
create motion. The top two inputs provide one set of x,y screen coordinate endpoints
for the line; the bottom two inputs provide the other set. By varying these values,
you can create motion.

The signal values fed into the inputs represent display pixels. Position (0,0) isthe
upper left corner of the VisSim window. Positive values extend to the right and
down. For your line to appear on most video screens, keep its position within the
bounds of aVGA screen (640x480).

Other ways to create animation

Animation can also be applied to a simulation using the 1ight, button, and bezel
blocks.

Use this block To For moreinformation
Tight Alternate among three images See page 199
button Alternate among 16 images See page 168
bezel Create operator control panels See page 165



Chapter 7
Solving Implicit Equations

This chapter covers the following information:

e  Setting up an implicit equation with unknown and constraint blocks
e Solving an implicit equation

e Using the Implicit Solver property sheet

e  Sampleimplicit equation

Setting up an implicit equation

When a system contains an implicit equation, that is, an equation defined in terms of
itself, you use unknown and constraint blocksto solveit. There may be one or
more or no solutions for the system.

The key steps to setting and solving implicit equations follows:

1. Definethe variable that needs to be determined as an unknown using the
unknown block. The order is very important — an unknown must be defined
first and then given a variable name.

2. Isolate zero on the right-hand side of the equation by moving all termsto the
left-hand side.

3. Construct the left-hand side of the equation, and equate the right-hand side by
using the constraint block to denote zero.

83



Chapter 7 Solving Implicit Equations

Algebraic loops

In the case of connections backward to earlier blocks aready evaluated
(often called feedback), VisSim checks to see that such feedback loops
contain at least one integrator, transferFunction, unitbelay, or
timeDelay block. If there is no such block in the feedback, the result is
numerically ill-defined and is referred to as an algebraic loop. VisSim
detects such algebraic loops and produces a warning message.

Solving an implicit equation

84

When solving an implicit equation, you can use the Newton Raphson solver or a
custom solver. You can also set the error tolerance, maximum iteration count,
perturbation, and relaxation parameters.

» Tosolvean implicit equation

1. Choose Simulate > Simulation Properties.

2. Click onthe Implicit Solver tab.
The Implicit Solver sheet in the Simulation Properties dialog box appears.

Simulation Properties
Hangal Integration Method  Implicit Sober |Preleremcas| Defaults'

¥ Mone

£~ Mewton-Raphson
' User defined

I ax [teration Count

Error Tolerance:

Relaxation:

Perturbation:

oK I Cancel | Aoply |

3. Choose the options you want, then click the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

4, Start the simulation.



Chapter 7 Solving Implicit Equations

Using the Implicit Solver property sheet

The Implicit Solver property sheet provides options for selecting the solver,
suppressing convergence warnings, specifying the maximum iteration count, and
more. The property sheet options are:

None: When you're not solving an implicit equation, activate None.

Newton-Raphson: Newton-Raphson is a singular value decomposition (SVD) based
solver that performs static optimization at each time step. VisSim derives an n-
dimensional slope by numerically perturbing the unknown outputs and observing the
effects on the constraints. VisSim uses the slope matrix to compute values for
the unknown blocksthat drive the constraints to aminimum. Newton-Raphson is
particularly useful for solving static equations in the presence of concurrent
dynamics.

User Defined: When User Defined is activated, VisSim uses the DLL file named
VSOLVER.DLL inyour current directory to solve the equation. For information on
creating a custom solver, see page 267.

Suppress Convergence Warnings: |f you're solving for a set of roots that are
equidistant from zero, you must initialize the unknown block to a value other than
zero to force the equations to converge. To suppress the convergence warnings when
solving an implicit system with nonlinear dynamics, activate Suppress Convergence
Warnings.

Max Iteration Count: Thisoption lets you specify the number of iterations the
solver performs while attempting to meet the error tolerance criterion. The default
valueis 10.

Error Tolerance: Thisoption lets you specify the maximum allowable difference
in total error between two successive iterations. A total error is computed as the sum
of individual errors squared, where the error signal isthe input signal to a
constraint block. Newton-Raphson ceases iterating when the difference in total
error between two successive iterations becomes less than the tolerance.

Use Error Tolerance in conjunction with Max lteration Count to control the time
spent converging. The larger the tolerance, the quicker and less accurate the solution.
The default valueis 0.0001.

Relaxation: This option attenuates the iteration update val ue to attain convergence
for equations that prove difficult to converge. As aside effect, it owsthe
convergence process because it forces the iteration to take smaller steps. The typical
rangeisfrom slightly greater than 0 to 2. Select valueslessthan 1 for systems that
appear to be unstable. The default valueis 1.

Perturbation: This option indicates the value by which the unknown blocks are
numerically perturbed to evaluate the Jacobian (matrix of first partials). Each
element of the Jacobian isaratio of constraint change with respect to block

85



Chapter 7 Solving Implicit Equations

perturbation value applied to the unknown blocks. The perturbation value should be
at least one order of magnitude less than the unknown initial value, but greater than
le-12 of theinitial value for the unknowns. The default value is 1e-007.

Implicit equation examples

Simple nonlinear implicit equation
Consider the equation:

y+cos(y)=0

This equation can be realized as.

(v ] - 739085 | Implicit Solution

X
Lmovn by e b

Initial Guess

In this configuration, the output of the summingJunction, namely y + cos(y) must
equal zero. Further, from left to right, the entire diagram reads

Starting with an initial guess of 2, find avalue for the unknown variable
called y such that y + cos(y) = 0.

The result indicates that y = -0.739085 is one possible solution. Other solutions may
exist and can be identified by using different initial guess values for the unknown
block.

Advanced nonlinear implicit equation
Consider the equation:
X% +3x+2=0

The roots of this equation can be obtained analytically as x=-2and x = -1 for
comparison. This equation can be solved implicitly in VisSim as shown on then next

page.



Chapter 7 Solving Implicit Equations

Bolution for x

Tnitial Guess

constraint

In this configuration, the output of the summingJunction, namely x* + 3x + 2, must
equal zero. The simulation yields one of the roots to be x = -1, as shown, starting
from a guess of +10. When a guess value of -10 is used, the diagram becomes:

Solution for x

Initial Guess

constraint

In this case, the second root, x = -2 is obtained.

This model shows that the solution obtained depends on theinitia guess supplied to
the unknown block. When theinitial guess valueis larger than -1, the solution
convergesto -1. When the initial guess value is smaller than -2, the solution
convergesto -2.

87



Chapter 8
Performing Global Optimization

This chapter covers the following information:

e  Setting up global optimization with cost and parameterunknown blocks
e Performing global optimization

e Using the Global Optimization dialog box

e Sample global optimization problem

Global optimization basics

Global optimization involves the automatic adjustment of system parametersto
maximize or minimize a specified quantity, while satisfying one or more global
constraints.

During global optimization, VisSim iteratively updates the parameter vector such
that the cost function generally decreases until it finds aminimum. The resulting
parameter values become the optimum val ues because they minimize the cost
function.

Cost functions with many local minimum values

Most cost functions will have many local minimum values and although VisSim tries
to avoid local minima, the one VisSim finds may not be the overall minimum. To be
surethat it is the global minimum, you may want to perform severa runs of the
optimizer, using different initial parameterunknown values.

89



Chapter 8 Performing Global Optimization

Cost functions with no minimum values

Itis possible that a cost function has no minimum, or has aflat surface away from
the minima. In this case, the global optimizer will get confused and wander aimlessly
(how can you run downhill when there is no hill?). If the optimizer appears to run
for along time with little convergence, you should suspect flat spotsin your cost
function. In such cases, you may have to reformulate the cost function such that it
has at least one minimum. A common mistake isto put alimit block just before the
cost input. In this case the optimizer will experiment with larger and larger unknown
valuesto no avail. If a Timit block isused in the cost function, it must be placed
before an integration of total error.

Performing global optimization

Global optimization is almost always anonlinear problem and rarely isthere asingle
best method for minimizing the cost function. VisSim provides the three
optimization methods: Powell, Polak-Ribiere, and Fletcher Reeves. Y ou can
alternatively write a custom optimizer, as described on page 270.

Regardless of the method you select, VisSim produces a sequence of parameter
updates on a per-run basis that decreases the value of the cost function. The basic
parameter update equation is:

R1 = B + AR, =iteration indexor VisSimrun number

The difference between each method is the way AR, is generated. For more
information on these methods, see Numerical Recipes, The Art of Scientific

Computing (Cambridge University Press).
» Toperform global optimization
1. Choose Simulate > Optimization Properties.

The Optimization Properties dialog box appears.

Method [~ Perform Optimization

Max lterations:
" Polak Ribiere

Error Tolerance: Il].l]1
" Fletcher Reeves

© User Method

& Powell

Advanced... |

0K Cancel | Help |

2. Activate the Perform Optimization option.

90



Chapter 8 Performing Global Optimization

3. Choose the options you want, then click on the OK button, or press ENTER. (For
more information on the options, see the descriptions below.)

4. Click onthe OK button, or press ENTER.

Start the simulation.

Using the Optimization Properties dialog hox
The Optimization Properties dialog box provides the following options:

Method: Y ou can choice between three supplied optimizers or use a custom
optimizer.

e Powell: A direction-set agorithm that typically runs faster because it does not
explicitly calculate the gradient.

e Polak Ribiere: A conjugate gradient algorithm that is a bit more sophisticated
than Fletcher Reeves for arriving at the supposed minimum of the quadratic
form.

o Fletcher Reeves: Requires fewer iterations to convergence. This conjugant
gradient algorithm is slower than Powell’ s method.

e User Method: When User Method is activated, VisSim usesthe DLL file
named VOPT.DLL in your current directory to solve the equation. For
information on creating a custom global optimizer, see page 270.

Perform Optimization: This option must be activated to perform global
optimization.

Max Iteration Count: [ndicates the maximum number of iterations.

Error Tolerance: Indicates the maximum error between the results of two
successive iterations. The default valueis 10.

Global optimization examples

Optimized paper bag problem

Suppose you want to manufacture paper grocery bags at the lowest possible cost,
where each bag has a volume of at least one cubic foot (1728 cubic inches). To
minimize the cost of material, you must determine the optimal bag dimensions that
minimize the amount of paper used for each bag, while ensuring that the volume of
the bag (v = whd) is greater than or equal to 1728 cubic inches. To simplify the
problem, additional material for folding and gluing the bag isignored.

91



Chapter 8 Performing Global Optimization

92

The cost function can be expressed as:

s=2(wh + dh) + dw

where sisthe surface area of the bag, wisitswidth, hisits height, and d isits depth.
The cost function is also subject to a given volume constraint:

Volumev =whd > 1728 cubic inches

Though not explicitly specified, it is clear that each of the physical dimensionsw, h,
and d must be greater than zero.

To solve this problem in VisSim, construct the following block diagram:

%

YYYY

Minitnization of surface area

ki
h
h
d
el : o
i L1
1728 717729

Final bag volume Final surface area

P cost
Force volume to be 1728 by
minimizing the difference (v - 1728},

L A 4

YYYy

10 ——m{ parameterUnknown ——ml abs [ d ] 17.1996
10— parameterTnknown ——m abs 10.0466
10— parameterTTnknown —m abs 10.0001
Initial guess values Optimal parameter values

Three const blocks, all set to 10, are used to produce the initial guess values. Their
outputs are connected to three parameterunknown blocks. To enforce the
requirement that the physical dimensions of the bag are positive, the outputs of the
parameterunknown blocks are connected to three abs blocks, and the outputs of
the abs blocks are connected to three variable blocks named d, w, and h. The
outputs of the three variables are connected to dispTay blocks to monitor the
changes and the final values of the bag dimensions.

The outputs of w, h, and d are connected to a three-input * block, and the output of
the * block is connected to a summingJunction andtoadisplay block. A const
block set to 1728 is connected to the other negated input of the summingJunction.
A cost block, connected to the output of the summingJunction block, enforces



Chapter 8 Performing Global Optimization

the minimization of the difference v - 1728. Thisis equivalent to forcing the volume
v to be very close to the desired value of 1728 cubic inches.

In order to minimize the surface area, the equation s = 2(wh + dh) + dw is coded
using variable, *, summingJunction, and const blocks. The output of the final
summingJunction block isconnected to avariable s, which is connected to
another cost block andto adispTay block.

Optimization is performed using the Powell method. The number of iterationsis set
to 50 and the error tolerance is 0.001. The optimization results indicate that a volume
of 1728 cubic inches can be attained by using an ideal surface area of 717.7 square
inches, with the final bag dimensions of w = 10.05, h = 10.00, and d = 17.20 inches.
In comparison, the intuitive solution of w = h = d = 12 inches has a surface area of
720 square inches.

Two segment approximation of sin(ri)

Consider the problem of approximating a sinusoid sin(rt) in the range (0,1) by two
straight line segments. In the range (0,0.5), the line segment has a positive slope, and
in the range (0.5, 1.0), the second line segment has a negative slope. The
approximation can be written as:

sin(zt) = ar(t)—2br(t-05)
where a and b are unknown weight factors, r(t) isaunit ramp that startsat t = 0, with
adopeof +1, and -2r(t - 0.5) isaramp that starts at t = 0.5 with aslope of -2.

The optimization problem in this case involves the determination of optimal values
for the unknown weight factors a and b. This equation can be realized as:

— + Actual and Approximate Sinusoids !EI X
Sin (pi*t ) 1s0l
125
» 1001 L,
F5-
501
25
0 | 1 | 1
o] 2 4 & g 1
Time (sec)
ramp: slope = -2, delay=0.5
]
.
S 3 a 228

cost = integral( errornz) Final parameter values



Chapter 8 Performing Global Optimization

94

In this configuration, two const blocks, both set to 1, provide the initial guess
values to two parameterunknown blocks. The outputs of the parameterunknown
blocks are connected to variabTle blocks a and b, thereby defining a and b to be
unknown parameters. The output of ais connected to a * block. A ramp block, with
an sope of 1 and no delay, is connected to the other input of the * block.

To generate aramp of slope -2 that is delayed by 0.5 sec, a const block setto 0.5is
wired to the time delay input of a timebelay block and a ramp block with an slope
of -2 iswired to the main signal input of the timebelay. The output of the
timeDeTay block is connected to one input of a * block and the other input is
connected to the output of b.

The outputs of the two * blocks are connected to a summingJunction, and the
output of the summingJunction isconnected to avariable Approx. The output
of asin block set to an amplitude of 1 and afrequency of nt radians/sec, is
connected to avariable named Sn(pi*t). The output of Sin(pi*t) and Approx are
connected to apTot block to observe the results.

The cost function is constructed using a summingJunction to calculate the
difference Sn(pi*t) - Approx. The output of the summingJunction isconnected to
both inputs of a * block to compute the squared error value. The output of the *
block is connected to an integrator block to compute the integrated squared error,
and the output of the integrator block is connected to a cost block, thereby
defining the integrated squared error to be the cost or objective function that needsto
be minimized by the optimization process. Two display blocks are connected to
the outputs of a and b to observe the final values computed by the optimizer for the
two weight factors.

Using the Fletcher-Reeves optimization method, with maximum iterations set to 300
and error tolerance of 0.0001, the values of a and b are obtained as 2.39 and 2.28,
respectively.

Five segment approximation of sin(~t)

By modifying the above problem, consider the usage of five line segments instead of
two. The approximation can be written as:

sin(zt) =ar(t)+br(t—0.3)—2cr(t—05) +3dr(t—0.6) —4er(t—0.7)



Chapter 8 Performing Global Optimization

This can berealized as:

B (i) : = B
e anmah

cost = ntegral( error™z) 1.25

4:4
o
oo

Titne (sec)

= ]
1 parameter Unknown C 766G
*

Final parameter values

[T} Farameter Do ]

The delayed versions of ramp signals are constructed using a ramp block with the
correct slope connected to the main signal input of a timebelay block, and a const
block with the correct delay value connected to the time delayed input of the
timeDelay block.

Five parameterunknown blocks, withinitial guesses set to 1, definethe variable
blocks a, b, ¢, d, and e to be unknown parameters. The outputs of the five * blocks
are connected to afive-input summingJunction block. The output of the
summingJunction isconnected to avariable named Approx. The output of a
sin block with an amplitude of 1, and frequency of  radians/sec is connected to a

variable named Sn(pi*t). The outputs of Approx and Sin(pi*t) are connected to a
pTlot block.

The cost function is evaluated by computing the integral squared error. In this case,
the optimization process yields the parameter values to be a = 2.85488,
b =-2.00003, ¢ = 0.766694, d = -0.125587, and e = 0.405633. From the p1ot block,

it isalso clear that the five-segment approximation is quite close to the original
sinusoid.

95



Chapter 8 Performing Global Optimization

Troubleshooting

96

How do | avoid system instability?

Y ou should limit the cost calculation because, during optimization, some parameters
may be supplied with values that drive the system into instability. The resulting large
cost value can cause the optimization method to fail to converge due to the limited
range of floating point numbers.

When limits are used, they must occur before the integration of the square of the
error so that onset of saturation is numerically reflected in the cost function. In this
way, onset of saturation is reflected in the cost value and gives the optimizer aslope
to follow down.

What do | set the initial tolerance to when | know little about optimal parameter
values?

Useaninitial tolerance value of 10 in the Optimization Properties dialog box when
you know very little about the optimal parameter values; otherwise, the algorithm
will take avery long time to search a short distance in parameter space.

Once optimal values are found, the parameterunknowns can bereinitialized with
the new optimal values and the optimization can be rerun with alower tolerance.

Though the algorithm tries to avoid local minima, to verify that the values found are
optimal, run the optimizer with different initial values supplied to the
parameterunknowns.



Chapter 9

Designing Digital Filters

This chapter covers the implementation of:

e Time domain filters with tapped delay

e Timedomain filters with transfer functions
e Frequency domain filters

e Interactive IR and FIR filter design with the transferFunction block

Digital filter basics

A digital filter is a discrete time system that delivers an output, which is amodified
version of itsinput.

Filters are the basic building blocks for most signal processing applications. They
aretypically used to extract or eliminate one or more constituent frequencies of an
incoming signal.

Filters used for signal conditioning are usually designed from frequency response
specifications, and are called frequency-selective filters. Frequency-selective filters
operate by attenuating some frequency components of the input signal while
allowing other components to pass through unchanged. For example, alow-pass
filter attenuates all frequenciesin the input signal that are above a specified

frequency.

97



Chapter 9 Designing Digital Filters

Filter operations

Filter operations can be represented mathematically by one or more difference
equations. A general difference equation can be written as:

M N
y() = ax(k-i)-> byyk—j)
i=0

i=1

This equation represents the relationship between the k™ sample of the output to the
N previous values of the output, the M previous values of the input, and the current
value of theinput. If al the coefficients b; are zero, the resulting filter is called a
non-recursive or Finite Impulse Response (FIR) filter. Recursive filters are also
known as Infinite Impulse Response (I1R) filters.

In FIR filters, the output is simply the weighted sum of the current and previous
inputs. In contrast, in IR filters, the output is the weighted sum of the current and
previous inputs, and the previous outputs.

Time domain filters with tapped delay
Consider afilter described by the following recursive difference equation:
y(K) = x(K) - 0.2y(k-1) - 0.8y(k-2)

Y ou can easily specify and implement thisfilter in time domain using uni tbelay
blocks. The filter input is x(K) and the filter output is y(K). The intermediate states are
y(k-1) and y(k-2). The filter can be implemented as:

The Time Between Pulses parameter for the pulseTrain block must be greater than
or equal to the simulation time step. An arbitrary value of 1 is assigned to input x.

98



Chapter 9 Designing Digital Filters

Time domain filters with transfer functions

Filters can also be implemented in the time domain using the transferFunction
block. For example, consider again the difference equation:

y(K) = x(K) - 0.2y(k-1) - 0.8y(k-2)
You can represent it in the form of atransfer function as:

Y(2) 22
R(z) z?+02z+08

Y ou can then implement the transfer function in block diagram form using the
transferFunction block:

Transfer Function Properties [ x|
i~ Specificati mat/ m File
o IIF: Fiker Files W
" mat File -
Fir Filter
" mFile SelectEE | Browse Data... |
Convert Z-35

[~ Tapped Delay

[V Disciete  dT: |0.01

= | DisplayiFilten Method

Initial Value: [0

Gair: |-| [lowest order state on right]
i~ Palynomial Coefficient:
Nurmnerator. |1 oo
Denarninatar: |1 2.8

oK I Cancel | Help |

In the Transfer Function Properties dialog box, activate Discrete and set the value of
dT to be greater than or equal to the simulation time step.

Frequency domain filter implementation

The dua nature of time and frequency domains means afilter in the time domain can
be equivaently implemented in the frequency domain. Depending on the
application, however, one domain is usually more convenient to work in than the
other.

A recursive | IR filter can be implemented in the frequency domain by taking the
product of the frequency domain equivalents of the input sequence and the filter.

y(K) = IDFT(Y(w)) = IDFT(x(a)) —::Eg)

99



Chapter 9 Designing Digital Filters

Here, X(w) and Y(m) are the Discrete Fourier Transforms (DFT) of the input and the
output sequences respectively, and IDFT represents the Inverse Discrete Fourier
Transform operation. Hy(w) and Hp(w) are the DFTs of the filter coefficients a, and
by, respectively, as given by the following difference equation:

M N
¥ = ax(k—i)- > byyk—j)

i=0 j=1

The DFT’s Ha(®) and Hy(m) must be of the same length as X(w) and Y(w). To
accomplish this, the filter coefficients must be zero-padded appropriately.
Conseguently, the frequency domain implementation is computationally inefficient
and will not be discussed further.

Comparison of FIR and IR filters

The non-recursive FIR filter has a finite memory due to the finite number of delays
that can be realized in a practical implementation. FIR filters usually have superior
phase characteristics. To obtain sharp cut-off characteristics, FIR filters need to be of
high order.

On the other hand, arecursive IR filter has infinite memory due to its dependence
on al prior outputs. Moreover, it generally requires a significantly lower number of
elements to obtain a specific cut-off characteristic. The phase characteristics of IR
filter, however, areinferior to those of FIR filters.

Interactive filter design with the transferFunction block

Thefirst step in the digital filter design processisto specify the characteristics that
you desire. The more fundamental specification would be the difference equation
that is to be satisfied. Such specifications may arise directly from requirementsin a
signal processing problem.

However, much more common are the specifications that arise when you want to
process a continuous time signal digitally, and you expect the digital filter to
approximate the performance of an anaog filter.

Using the transferFunction block you can design either |IR filters using analog
prototypes or FIR filters.

lIR filter design

IIR filter design isthe design of digital filters using Bessel, Chebyshev, Butterworth,
or Inverse Chebyshev analog prototypes. To set up an IR filter, click onthe lIR
Filter command button in the Transfer Function Properties dialog box.

100



Chapter 9 Designing Digital Filters

IIR Filter Properties [ x|
Methad: IEulterwnrth j
Type: ILow Pass j
i~ Specification Method | [~ Advanced Oplions
* Drder lh_ ! Hinple: IU
 Attenuation £ Epsilon IU
= cleaiels Pass:Hand (e I'I
r~ Frequency S pecifications [Hz]
Lo High
Cutoff Frequency: 1 10
Attentation Frequences (1.5 BlE]
A= 1] 0

Num:l

Den: I

Lione | Calc Filter LCancel

Using the IIR Filter Properties dialog box

ThelIR Filter Properties dialog box lets you constrain the design through either filter
order or goodness-of-fit. The analog prototypes can be subsequently converted into a
digita filter using bilinear transformation.

Method: You can choose from four analog filter methods, as described below.

o Bessal: Bessd filters are designed using Bessel polynomials. The Bessel filters
are characterized by the property that the group delay is maximally flat at the
origin of the s-plane. The step response of the Bessel filters exhibits very low
overshoot and both the magnitude and impul se response exhibit gaussian decay
asthefilter order isincreased.

e Butterworth: Butterworth filters are characterized by the property that the
magnitude characteristic is maximally flat at the origin of the s-plane. This
means that all the existing derivatives of the magnitude response are zero at the
origin. Butterworth Low Pass filters are all-pole designs and have an attenuation
of 3 dB at the critical frequency. Thefilter order completely specifies the filter
and can either be explicitly provided or determined from the attenuation
frequency and the attenuation level desired.

e Chebyshev and Inver se Chebyshev: Chebyshev filters are characterized by
the property that the peak magnitude of the approximation error is minimized
over aprescribed band of frequencies. The magnitude is equi-ripple over the
band of frequencies. For example, the magnitude oscillates between the maxima
and minima of equal amplitude.

For the Chebyshev filters, the band of the frequencies over which the error is
minimized is the Pass Band. For Inverse Chebyshev filters, the error is

101



Chapter 9 Designing Digital Filters

102

minimized over the Stop Band. The optimality property of the Chebyshev filters
guarantees that no other all-pole filter offers equal or better performance in both
the Pass and Stop bands. Inverse Chebyshev filters exhibit monotonic behavior
in the Pass Band (maximally flat around the zero frequency) and equi-ripple
behavior in the Stop Band. The Low Passfilter has polesin the left half of the s-
plane and zeros on the imaginary axis.

Type: Indicates the band pass filter type.

Specification method: The following table describes how the specification method
relates to the analog filter prototypes.

Filter Notes

Bessel Y ou only need to specify the order.

Butterworth If you specify the order, VisSim determines the attenuation. If you
specify the attenuation, VisSim determines the order.

Chebyshev If you specify the order, then the order and epsilon define thefilter.

The attenuation is fixed once a particular order and epsilon are
chosen. If you specify attenuation, VisSim determines the order
based on the attenuation and epsilon. VisSim determines the order
such that the attenuation and epsilon specifications are met.

Inverse Chebyshev  Whether you specify the order or epsilon, the attenuation needs to be
specified. If you specify the order, VisSim computes the epsilon
based upon the attenuation and the attenuation level desired. In
general, as the attenuation desired for afixed-order filter increases,
the corresponding epsilon also increases. This property could be
exploited to yield very narrow band filters by specifying an
extremely high attenuation, along with a narrow band. If you specify
epsilon, VisSim determines the order based upon the attenuation
desired. VisSim determines the order such that the attenuation and
epsilon specifications are met.

The order of thefilter that is generated is twice the order of the filter specified. For
example, if you enter 2 in the Order box for a Band Pass filter, the filter generated
will have an order of 4.

Cut-off Frequency: Thelow and high cut-off frequenciesin the Frequency
Specification box define the band edges. For Low Pass and High Pass filter types,
thereis only one cut-off frequency. For Band Pass and Band Stop filters, the low and
high frequencies are both cut-off frequencies.

Attenuation and Attenuation Frequency: The attenuation characteristics of the
filter are defined by:

e Low and high attenuation frequencies: The attenuation frequencies are set by
the Attenuation Frequency (Low) and Attenuation Frequency (High)
parameters. The values you enter indicate the frequency at which the specified



Chapter 9 Designing Digital Filters

attenuation level is reached.

e Low and high attenuation levels: The attenuation levels are set by the
Attenuation (Low) and Attenuation (High) parameters. The values you enter
indicate the amount by which you desire to suppress the level. An attenuation
level of 100 equals a magnitude of 1/100.

For example, a Band Pass filter with band edges specified at 100 and 1000, an
attenuation level of 10, and attenuation frequencies of 20 (low) and 100 (high)
means that the filter gainis 0.1 at 80 and 0.05 at 1100. The epsilon (€) isa measure
of the attenuation level reached by the filter' s magnitude characteristics at the critical
frequency. Attenuation level at the critical frequency is given by:

Advanced Settings. The Epsilon and Ripple parameters provide two alternate ways
of specifying the behavior of a Chebyshev filter.

Thereisafluctuation (or ripple) in the amount (or attenuation gain) of the Band Pass
and Band Stop. Thefilter order affects the size of the ripple, and the filter can be
tuned to minimize that ripple.

Epsilon refersto the error between the ideal filter and the actual filter, regardless of
theripple. Minimizing the epsilon provides a best fit filter.

1

V1+ &

Therippleisthe attenuation level at the critical frequency. Defining the epsilon
completely definesthe ripple.

Setting the frequency units

Frequency units can be specified in either radians per second or hertz. Y ou set the
freguency unit in the dialog box for the Simulate > Simulation Properties command.

Generating an IR filter

When you generate an IR filter, VisSim calculates the polynomial coefficients for
the transfer function with the desired frequency characteristics.

» Togeneratean IR filter

1. Click on the Calc Filter command button to calculate the filter coefficients. The
coefficients will be displayed in the Num (numerator) and Den (denominator)
boxes.

2. Click on the Done button to close the IR Filter Setup dialog box and transfer
the filter numerator and denominator coefficients to the Transfer Function Setup
dialog box.

103



Chapter 9 Designing Digital Filters

FIR filter design

VisSim uses the Remez Multiple Exchange algorithm to design FIR filters. FIR
filtersin discrete time are realized as all-zero filters and are characterized by afinite
impulse response in the time domain. Because they are all-zero filters, they are
particularly well-suited to efficient computation by tapped delay.

FIR filter design istypically executed in the frequency domain for convenience. The
filter has the desired magnitude specifications and a linear phase characteristic.

Differentiators and Hilbert transformers

You can also design differentiators and Hilbert transformers using the
Remez Multiple Exchange algorithm.

Differentiators are characterized by an approximate linear magnitude
response over the desired frequency range.

Hilbert transformers are characterized by aflat magnitude response and a
phase of 90° over the specified frequency range. Frequency characteristics
of anideal Hilbert transformer are:

. T
HEe'’)=-] 0<w<s—
-

= 4] Zew<?t

T T

where o isthe angular frequency and T is the sampling time period.

Discrete and continuous FIR filter design

The discrete timefilter design problem is treated as a weighted Chebyshev
approximation problem and is solved using the Remez Multiple Exchange algorithm
to compute the filter coefficients. The algorithm builds a discrete time representation
of thefilter.

In VisSim, the Discrete parameter in the Transfer Function Setup dialog box controls
whether the generated FIR filters are discrete or continuous. When you design a
discrete FIR filter, you must also specify atime step in the dT box.

To implement a continuous FIR filter, de-activate the Discrete parameter. In this
case, thefilter isinitially designed as a discrete timefilter. Bilinear transformation is
subsequently used to produce a continuous time equivalent. For more information on
the Remez a gorithm, see Theory and Application of Digital Sgnal Processing
(Prentice Hall).

104



Chapter 9 Designing Digital Filters

Tapped delay implementation

Tapped delay is amethod of transfer function implementation that has linear
computational and storage requirements with respect to model order.
Because most FIR filters have atendency to be high order, it makes sense to
design FIR filters with tapped delay implementation. To do so, activate
Tapped Delay in the Transfer Function Properties dialog box.

Using the FIR Filter Properties dialog box

When you click on the FIR Filter command button in the Transfer Function Setup
dialog box, the FIR Filter Setup dialog box is opened.

Order: |5_ Filter Kind: Im

i~ Band Specification [Hz]
Start Freq End Freq Band "weight Band Gain
2 [0 [ [

Add Delete Change

Hum: I
Der: |

Done | Ea\cfllterl Cancel |

Order: The value specified in the Order box definesthe filter order. Typically,
higher orders yield better approximations.

Filter Kind: Indicatesthe type of filter to be generated. Y our choices are FIR,
differentiator, and Hilbert transformation. Descriptions of these filters are on page
104.

Band specification: Band specifications describe the frequency bands magnitude
response characteristics of the filter. The following rules must be observed when
entering band specifications:

e Frequencies are specified in hertz for discrete and continuous filters.

o For discretefilters, the frequency specified must be lower than the Nyquist
frequency.

e  For continuous filters, infinite frequency is indicated using the reserve word
13 I nf .17

105



Chapter 9 Designing Digital Filters

106

Start Freq and End Freq: Definesthe lower and upper cut-off frequencies for
each band.

Band Weight: Dictates the relative amounts of error allowed for each band. Higher
weight values of a particular frequency band reflect higher sensitivity to error, where
error is perceived as the difference between the actual and desired filter response. At
least one band must have aweight of 1. For each of the other bands, you can use a
higher or lower weight depending on the relative error that can be tolerated.

An equal weight of 1 on all bands indicates that the maximum absolute error on all
bandsisthe same. A weight of 10 on one band and aweight of 1 on other bands
implies that the former band has a maximum approximation error that is ten times
less than that of the other bands.

Band Gain: Defines the desired frequency response magnitude for each band.

» Toaddaband

e Enter the band specification and click on the Add button.

The band information is added to the list box. Each row in the list box corresponds
to asingle band. For FIR filters, if the number of bands increases, the filter order
must be increased correspondingly, to maintain the same approximation error. For
differentiator and Hilbert transformers, the number of bandsis limited to one. The

gain on the differentiator implies the gain achieved at the end frequency. The weight
in either case is optimally adjusted to give the best error characteristics.

» Todeeteaband
e Select the band to be deleted from the list box and click on the Delete button.

» Tochangeaband’s specifications
1. Select the band to be changed from the list box.

The band’ s data appears in the edit boxes.
Make the desired changes.

3. Click on the Change button. The band datais modified in the list box to reflect
the changes.

Generating an FIR filter

Calc Filter command button. This generates the appropriate filter coefficients.
Before computing the filter coefficients, the algorithm computes the maximum
approximation error. This error is usually referred to as delta () and is defined as
the weighted difference between the actual and the desired magnitude response. A
band with aweight of one will have delta as its absolute approximation error, while



Chapter 9 Designing Digital Filters

aband with aweight of 10 will have its absolute error 0.1 times 6. Thevaueof éis
displayed in the message box.

» Togeneratean FIR filter

1. Click on the Calc Filter button. The coefficients are displayed in the Num
(numerator) and Den (denominator) boxes. If the delta displayed istoo large,
increase the order of thefilter and re-calculate the filter.

2. Click on the Done button to close the FIR Filter Properties dialog box and
transfer the filter numerator and denominator coefficients to the Transfer
Function Properties dialog box.

107



Chapter 10

Working with Other Applications

This chapter covers the following information:
e Usingthe import block to import datafrom other applications into VisSim
e Usingthe export block to export data out of VisSim

e Usingthe DDE, DDEreceive, and DDEsend blocks to create links to other
applications

Importing basics

VisSim uses the import block to import information from many different file types
generated by other applications. These include data files (DAT), MatLab and
MatLab-likefiles (MAT and .M), and 8-bit or 16-bit sound files (WAV).

The import block reads data points from the specified input file into the system
model and translates them into scalar, vector, or matrix output signals. The import
block can receive up to 50 scalar inputs and an unlimited number of vector or matrix
input. The data can be either fixed interval or asynchronous.

The import block is particularly useful for comparing experimental datawith
simulated results and for inserting trial control datafrom an external source.

Setting up the input file

Theinput file can contain a header line to describe the separation of data points. The
following table describes the header line format:

For thistype of interval Use thisformat
Fixed interva #l=start-time, end-time, increment
Asynchronous interval #T=number (time-column)

109



Chapter 10  Working with Other Applications

110

Importing data

Importing data involves dragging an import block into the work area and setting up

the block to reference the input file.

» Toimport data

1. Fromthe Signal Producer category in the Blocks menu, drag an import block
into the work area.

2. Choose Edit > Block Properties.

3. Click the mouse over the import block.

The Import Properties dialog box appears.

File Name: Browse Data... |

Start Column: |1
I Select File... |
Type: Idouhle ~| Dimension: |Scalar 'l Play Sound |

¥ Interpolate ¥ Extrapolate

Data Point Time Delta —————— Data File Info
& Fixed Interval |0 g‘ad"TTimE: g
nd Time:
" Time Data Column |1 Data Point Count: 512
OK Cancel | Help |

4. Select the import parameters. (See the descriptions below for more information
about each parameter.)

5. Click on the OK button, or press ENTER.

Using the Import Properties dialog box

The Import Properties dialog box provides the following options:
File Name: Indicates thefile to be used asinput to VisSim. Y ou can specify .DAT,

.M, .MAT, or WAV files. When you specify a.WAYV file, you can play the sounds
you imported by clicking on the Play Sound button.

If you do not know the name or location of the input file, click on the Select File
button to locate and choose afile.

To browse or edit the input file, click on the Browse Data button after you select a
file

Start Column: Inamulti-column file, you can choose the column that corresponds
to the top-most connector tab. The default value 1 corresponds to the first column.



Chapter 10 Working with Other Applications

Type: Indicates the type of datato be imported.

Dimension: Controlsthe dimensionality of the output signals. The choices are
scalar, vector, and matrix.

Interpolate: Interpolates between two data points, instead of using the last known
datavalue. Thus, if the datapoint is5 at t;, and 15 at t, then at t; 5, the data point is
10 with interpolation, and 5 with no interpolation.

Extrapolate: Infersthe next unknown data point based on the difference between
the last two known data points.

Data Point Time Delta: Indicates the time interval between data points in the input
file. If theinput file was generated by VisSim using the export block, VisSim
automatically reads the time interval information from the file header and setsthe
parameter accordingly. Y ou have the following choices:

e Fixed Interval: Indicates that data points occur in fixed intervals. Enter the
interval in the corresponding box. Thisisthe default setting.

e TimeData Column: Indicatesthat data points occur inirregular timeintervals.
Enter the column containing the time data points in the corresponding box.
Valid column numbers are 1 through 16.

Data File Info: Provides read-only information about the imported data. The Start
Time and End Time fields indicate when VisSim starts and stops recording data. The
Data Point Count field indicates the maximum number of data pointsto be read into
VisSim. If the input file was generated in VisSim using the export block, VisSim
automatically reads the data point count from the file header and sets the field
accordingly. The maximum number of data points that can be read into VisSimis
128,000 (Windows 3.1) or 250 million (Windows 95 and Windows NT).

Exporting basics

The export block writes signalsto an output filein .DAT, .M, .MAT, or WAV file
format. The export block can send up to 50 scalar outputs and an unlimited number
of vector or matrix output. The output file can subsequently be used as input to
VisSim or to avariety of other programs, such as MatL ab and Microsoft Excel. The
following information is written to the file:

e Datapointsthat represent signal values. Data points are stored as ASCI| text.
e Timeinterva information that applies to the data points.

Exporting data

Exporting datainvolves dragging an export block into the work area and setting up
the block to reference the output file.

111



Chapter 10  Working with Other Applications

112

P Toexport data

1. Fromthe Signal Consumers category in the Blocks menu, drag an export block
into the work area.

Choose Edit > Block Properties.
3. Click the mouse over the export block.

The Export Properties dialog box appears.

Export Properties

Data File Name:
Browse Data...l Select File... | Play Sound |
Data Point Time Delta | | Data File Info
@ Fixed Interval  [0.05 Start Time: 0
 External Trigger Endlime I
Max Data Points: |512
[~ Periodic Data Flush Field Separator: |\t =
HushiIntensali |0 Digits of Precision: [15
[~ Suppress YisSim Header ™ Append to File
Comment; I
0K Cancel | Help |

4. Select the export parameters. (See the descriptions below for more information
about each parameter.)

5. Click on the OK button, or press ENTER.

Using the Export Properties dialog box
The Export Properties dialog box provides the following options:

Data File Name: Indicates the name of the export file into which data points are to
be written. Y ou can type the file name directly into this box or select one using the
Select File button. If you do not specify adatafile, VisSim writes the data pointsto a
file using the same name as your current block diagram. VisSim appliesthe .DAT
extension to the file and storesit in your current directory.

You can export datain .DAT, .M, .MAP, MAT, and .WAYV fileformats. The
following special considerations apply to map files and wavefiles:

e |f you want to create an output file to be used as input to the map block, you
must specify the .MAP extension.

e You can create 8-bit and 16-bit sound files. Y ou specify the bit count in the
Digits of Precision box. Provided you have the appropriate hardware



Chapter 10 Working with Other Applications

configuration and software driversinstalled, you can preview the sound by
clicking on the Play Sound button.

If you click on the Browse Data button, the file specified in the Data File Name box
is opened for you to examine or edit.

Data Point Time Delta: Controls how VisSim writes the time interval information
to the datafile. Y ou have the following choices:

e Fixed Interval: Indicatesthat data points occur in fixed intervals. The default
interval used will be taken from the simulation step size. Y ou can specify a
different interval, however, it should be a multiple of the smulation step size,
because the export block does not interpolate. Datais only exported at integral
multiples of the simulation step size. This automatic adjustment isinvisible
when it occurs, which meansit is not reflected in either the export block’s
dialog box or the data file header. Y ou can see the adjustment only when you
open the datafile.

If you import the output file into a simulation, you should edit the file header to
reflect theinterval at which the data was actually exported. The import block
will interpolate as needed, retaining the timing of the original simulation run.
Use the Browse Data button to open the datafile for editing. The format of the
data header file should be as follows:

#l = start-time, end-time, increment
The default is Fixed Interval.

e External Trigger: Indicatesthat datawill be recorded based on the state of the
external trigger input. When External Trigger is activated, VisSim adds a round
input connector tab to the export block. A zero value on the trigger inhibits
datarecording. A value of 1 causes a data point to be recorded.

Valid column numbers are 1 through 16, inclusive.

Periodic Data Flush and Flush Interval: When activated, Periodic Data Flush
writes the data in the export buffersto the specified datafile at intervals established
with Flush Interval.

SuppressVisSim Header: Suppresses writing the data header to the export file.
Suppressing the data header may be necessary if the export fileisto be imported into
a software product other than VisSim.

The header information indicates whether the datais fixed or variable interval; the
valid time range over which the datais collected; the actual fixed interval; and the
time column for variable interval data. The following formats are used:

Fixed Interva #l = start-time, end-time, increment
Variable Interval #T= number (time-column)

113



Chapter 10  Working with Other Applications

DDE hasics

114

Field Separator: Specifies the column separation character in the export file, which
allows for compatibility with other applications. Recognized column separators are
tabs, new lines, spaces, commas, semi-colons, and colons.

Digits of Precision: Specifies (for .DAT, .M, .MAT files) the maximum number of
significant digits printed regardless of the decimal point. The default is 15.

For WAV files, use Digits Of Precision to indicate whether the sound fileis 8-bit or
16-hit. Enter 8 for 8-bit sound files or 16 for 16-bit sound files.

Append to File: Appends the exported data to the end of a specified file, instead of
re-writing the file at the start of each new simulation run. This parameter is useful
for multi-run applications, such as data acquisition, Monte Carlo simulations, and
neural network training

Comment: Specifiesacomment that is placed at the beginning of the exported data
file. A comment is limited to 180 characters.

Data File Info: Provides read-only information about the export file. The Start
Time and End Time fields indicate when VisSim starts and stops writing data points
to the export file. These settings are obtained from the current settings of Range Start
and Range End in the Simulation Properties dialog box.

The Max Data Points field indicates the maximum number of data pointsto be
written to the export file. The default is 512 data points. The maximum number of
data points that can be written to file is 128,000 (Windows 3.1) or 250 million
(Windows 95 and Windows NT).

By creating dynamic data exchange (DDE) links, you can share information in one
file with several other files, and you need only maintain the origina file; the other
files are updated automatically. For example, if you store datain a Microsoft Excel
spreadsheet, you can use that datain a VisSim block diagram. When you update the
spreadshest, VisSim automatically updates the data in the block diagram when you
run asimulation.

Y ou create DDE links by copying a selection from one application (referred to as the
source or server) and pasting it into another one (referred to as the destination or
client) using the Paste Link or Paste Special command. Before you can create alink,
the source file must be saved to disk.

VisSim offers three blocks for creating DDE links:

e ThebDEsend block, which links source information in a VisSim block diagram
to another application, such as a Microsoft Excel or Visual Basic file.

e ThebDDEreceive block, which links source information in an application file
to aVisSim block diagram.



Chapter 10 Working with Other Applications

e TheDDE block, which establishes atwo-way link: it acts as both the source
(sender) and destination (receiver). For example, a DDE block can send datato a
Visual Basic program to work on, and then receive the updated data back from
Visual Basic.

Y ou can create DDE links only between VisSim and other Windows applications
that support DDE linking. Some applications do support DDE links, but do not
support creating the links by copying and pasting selections. When thisisthe case,
you can till create alink by entering the link address directly to both the source and
destination files.

Creating an app-to-VisSim link with DDEreceive

Follow this procedure when the source information for the link is contained in an
application other than VisSim.

» TocreateaDDE link from an application into VisSim

1. Inthe application, select the information you want linked to your block diagram,
and from the Edit menu, choose the Copy command.

The selected information is copied to the Clipboard.

2. Switch to VisSim and open the block diagram in which you want to create a
DDE link.

3. Do one of thefollowing:
a) Choose Edit > Paste Link.

b) Position the pointer where you want the DDEreceive block to appear and
click the mouse.

-Or-

a) From the Blocks menu under DDE, drag a DDEreceive block into the
work area.

b) Choose Edit > Block Properties and click the mouse over the DDEreceive
block.

115



Chapter 10  Working with Other Applications

116

4. The DDE Receive Link Configure dialog box appears.

: DDE Receive Link Configure [ %]

Server|T opic: I—
Sendlltem I—
BReceive ltem: W
WEta Timeaut IZ—

I™ Custom Lpdate [nterval: l_

I~ | Ealebata ™ Synchronous Dperation

Output Dimension: | Szalar 'I

Bitmap
ﬂame'l

Image.

Bl | | Festelik | |

Help Cancel

5. Click on the Paste Link button and choose the options you want. (For
information on the options, see the descriptions below.)

6. Click onthe OK button, or press ENTER.
7. Choose Simulate > Go to update the link.

Using the DDE Receive Link Configure dialog box
The DDE Receive Link Configure dialog box provides the following options:

Server|Topic: Indicates the name of the source application (server) and the type of
information (topic). For example, Excel|[FOO.XLS indicates an Excel spreadsheet
named FOO.

If the source application supports Copy Link, VisSim automatically fillsin this
parameter when you click on the Paste Link button.

If the source application does not support Copy Link, you must enter the source
application name and topic name directly to this box. Use the same names that the
source file uses as its server and topic names. Separate the names with a pipe (])
character.

Send Item: This option does not apply to the DDEreceive block.

Receive Item: Indicates a name that references cells, cell ranges, values, or afield
of datain the sourcefile. For example, R1C1 references the information in the cell
occupying row 1, column 1 of an Excel spreadsheet.

If the source application supports Copy Link, VisSim automatically fillsin this
parameter when you click on the Paste Link button.



Chapter 10 Working with Other Applications

If the source application does not support Copy Link, you must enter the same name
that the source file uses asits item name.

Data Timeout: This option does not apply to the DDEreceive block.

Custom Update Interval: Indicates how often the DDEreceive block requests
information from the linked application. If you enter the value 1, DDEreceive
reguests information once per sec; if you enter 10, DDEreceive requests
information once every 10 sec; and so on. If you do not enter avalue, DDEreceive
updates at each time step of the simulation by default.

Poke Data: This option does not apply to the DDEreceive block.

Synchronous Oper ation: Suspends the smulation until the DDEreceive block
receives a message with updated data.

The DDEreceive block has a buffer that contains the current value of the block. If
the block is not synchronous, at every time step, DDEreceive supplies whatever
valueisin its buffer. When Synchronous Operation is turned on and the
DDEreceive block has not received updated data since the last time step,
DDEreceive waits until it receives a new message with updated data.

Output Dimension: Controlsthe dimensionality of the data exiting the
DDEreceive block. The choices are scalar, vector (n x m), or matrix (mx n).

Bitmap: Applies abitmap image to the DDEreceive block. You can type thefile
name directly into the Name box or select one by pressing on the Select Bitmap
button.

Creating a VisSim-to-app link with DDEsend

Follow this procedure when the source information for thelink is contained in a
block diagram.

» TocreateaDDE link from a VisSim block to another application

1. InVisSim, wire abDDEsend block to the output of the block that contains the
information you want linked to another application.

2. Choose Edit > Block Properties and click the mouse over the bDEsend block.
The DDE Send Link Configure dialog box appears.

117



Chapter 10  Working with Other Applications

i DDE Send Link Configure

ServerT opic, VizSimlDiagram

Send Item; llm).al.a\n—
Heceive e l—
Data Tiimeout: |2—

[T Custom Updates Interval: I_

[" PokeData I=| Sunichranaus Dperation

Output Dimenszian: Scalar ™

Bitmap

HMame: I
Image.. |

Copylink | PasicLink | o |

Help | Cancel |

3. Inthe Send Item box, enter aname. The default name is SsmDataln.

Note: When the block diagram contains multiple links to other applications
(that is, the diagram contains more than one DDEsend block), the name you
enter in the Send Item box must be unique to that block diagram. If it’s not
unigue, VisSim will not pass the correct information to the application.

4. Choose the options you want. (For information on the options, see the
descriptions below.)

5. Click on the Copy Link button.
6. Click onthe OK button, or press ENTER.

7. Switch to the destination application and open the file in which you want to
create alink.

8. Position the insertion point where you want to insert the information.
9. Choose Edit > Paste Link.

Note: Some applications have a Paste Special command instead of a Paste Link
command. Refer to the application's documentation for information on linking.

10. Switch back to the block diagram, and choose Simulate > Go to update the link.

Using the DDE Send Link Configure dialog box
The DDE Send Link Configure dialog box provides the following options:

Server|Topic: Indicates the name of the source application (server) and the type of
source information (topic). This parameter defaults to VisSim|name-of-block-
diagram. The server name must always be VisSim.

118



Chapter 10 Working with Other Applications

Send Item: Indicates a name for the source information. The destination file uses
thisnamein itsitem field. To maintain multiple DDE links from a single block
diagram, the name you enter must be unique.

Theinformation in this box defaults to ssmDataln.
Receive [tem: This option does not apply to the bDEsend block.
Data Timeout: This option does not apply to the DDEsend block.

Custom Update Interval: Overrides the time step interval for sending datato the
destination application. If you enter the value 1, DDEsend sends data once per sec; if
you enter 10, DDEsend sends data once every 10 sec; and so on. If you do not enter a
value, DDEsend sends data at each time step of the simulation. Y ou can use Custom
Update Interval only when Poke Datais activated.

Poke Data: Sends data to the destination application at every time step, regardless
of whether it is ready to receive the data. When Poke Datais not activated, datais
sent only when the destination application requestsiit.

Y ou can override the time step interval for sending data with the Custom Update
Interval.

Output Dimensions. Controls the dimensionality of the data entering the bDDEsend
block. The choices are scalar, vector (n x m), or matrix (mx n).

Bitmap: Applies abitmap image to the DDEsend block. Y ou can type the file name
directly into the Name box or select one by pressing on the Select Bitmap button.

Creating a two-way link with DDE

The DDE block isacombination of the bDEreceive block and DDEsend block: the
DDE block can both send and receive information. As a server, the DDE block passes
source information to another application to work on. As aclient, the bDDE block
receives updated information back from the application.

P Tocreate atwo-way DDE link

Use this procedure when you want VisSim to fill in the name of the server and topic
pair of the destination application.

1. Createthelink to passinformation from the application to VisSim:

a) Inthe application, select the information you want linked to your VisSim
block diagram, and choose Edit > Copy.

Theinformation is copied to the Clipboard.

b) Switch to VisSim and open the block diagram in which you want to link the
copied information.

¢) From the Blocks menu under DDE, drag a DDE block into the work area.

119



Chapter 10  Working with Other Applications

120

d) Choose Edit > Block Properties and click the mouse over the DDE block.
The DDE Link Configure dialog box appears.

€) Choose the Paste Link button and the additional options you want. (For
information on the options, see the descriptions below.)

f) Click onthe OK button, or press ENTER.
Create the link to pass information from VisSim back to the application:

a) InVisSim, wirethe block (containing the information you want linked to
the other application) to the DDE block.

b) Choose Edit > Block Properties and click the mouse over the DDE block.
The DDE Link Configure dialog box appears.
¢) Inthe Send Item box, enter a unique name.

d) Choose the Copy Link button and the additional options you want. (For
information on the options, see the descriptions below.)

€) Click onthe OK button, or press ENTER.
f)  Switch back to the application file.
0g) Movetheinsertion point to where you want to insert the information.
h) Choose Edit > Paste Link.
Note: Some applications have a Paste Special command instead of a Paste

Link command. Refer to the application’s documentation for information on

linking.



Chapter 10 Working with Other Applications

Using the DDE Link Configure dialog box

The DDE Link Configure dialog box provides options for establishing a DDE link,
specifying the source information, indicating the time-out interval, and more. These
options are described below.

Server|Topic: l|—
Send [tem: W
BRecsive [tem: W
Liata Timeout: IZ_

™ Custom Update Interval I_

I” Poke Data ™ Sunchionous Operation

Output Dimension; Scalar 'I

Bitmap

ﬂama‘l
Image...

[Eapylint | Easte Lt | ok |

Help | LCancel |

Server|Topic: Indicates the name of the application (server) and the type of
information (topic) to which you’ re establishing alink. For example, VBDDE|NNET
sends data to and receives data from the application called VBDDE on the NNET
topic. Use the pipe (|) character to separate the server from the topic.

Send Item: Indicates a name for the source information. The destination file uses
this name for itsitem field. To maintain multiple DDE links from a single block
diagram, the name you enter must be unique.

The information in this box defaults to smDataln.

Receive Item: Indicates aname that references cells, cell ranges, values, or afield
of datain the source file. For example, R1C1 references the information in the cell
occupying row 1, column 1 of an Excel spreadsheet.

If the source application supports Copy Link, VisSim automaticaly fillsin this
parameter when you click on the Paste Link button.

If the source application does not support Copy Link, you must enter the same name
that the source file uses asits item name.

Custom Update Interval: Overridesthe time step interval for sending and
receiving information. If you enter 1, DDE requests and sends information once per
sec; if you enter 10, DDE requests and sends information once every 10 sec; and so
on. If you do not enter avalue, DDE updates at each time step of the smulation.

Data Timeout: Indicatesthetime, in sec, that VisSim will wait to receive
simulation time step data from the client. The default is two sec.

Poke Data: This option does not apply to the DDE block.

121



Chapter 10  Working with Other Applications

122

Synchronous Operation: This option does not apply to the DDE block.

Output Dimension: Controls the dimensionality of the data entering and exiting the
block. The choices are scalar, vector (n x m), or matrix (mx n).

Bitmap: Applies abitmap image to the DDE block. Y ou can type the file name
directly into the Name box or select one by pressing on the Select Bitmap button.

Creating DDE links with applications that do not support
Copy Link and Paste Link

A DDE link consists of athree-part link address contained in both the source
(server) and destination (client) files. An example of such an addressis shown
below:

Pipe character

Exclamation point

=EXCELISHEET1!R1C1

Item (cell range, value, or
field of data referred to)

Topic (document name or topic)

Server (application name)

Most applications, including VisSim, automatically create the link address using the
Copy Link and Paste Link commands. If, however, the application with which you're
linking supports DDE but not the Copy Link and Paste Link commands, you can till
create a DDE link by typing the link address directly into the source and destination
files. Just make sure that the server, topic, and item names are the same in source and
destination files.

Refer to the descriptions of the DDE, DDEreceive, and DDEsend blocks earlier in
this chapter for information on how to enter these fields directly into the blocks.
Refer to the documentation for the other application for entering link addresses.



Chapter 11
Working with Large Diagrams

This chapter covers the following information:
e  Creating model hierarchy

e Embedding blocks

e Adding block diagrams

e Using variablesto pass signals

e Using path aliasesto referencefiles

e Tracking diagram progress

e  Protecting your work

Creating model hierarchy

Compound blocks alow you to encapsul ate one or more blocks in asingle block.
This gives you more flexibility in constructing and editing your block diagram
models, especialy if they are complex. The top level blocks display major
component connectivity, leaving the underlying levels to describe the logic of each
component.

Compound blocks also encourage a modular approach to large model construction
by allowing you to design and test functionally independent subcomponents
concurrently. Then using the embed block or the File > Add command (as described
on pages 127 and 128), you can incorporate each subcomponent back into the large
system diagram.

Y ou can have as many levels as you want in a compound block. (The number is
limited only by your system resources.) If your compound block contains sensitive
information, you can prevent other users from viewing the compound block by

123



Chapter 11 Working with Large Diagrams

locking it closed. Y ou can alternatively apply read-only attributes to the compound
block. Thislets other users view the contents of the compound block but denies them
the ability to edit it. Applying protection to compound blocks is described on page
136.

Y ou can aso make compound blocks disappear from view in display mode.

To make compound blocks easier to distinguish, you can color them blue, or for
more visua power, attach bitmap images to them. If you choose to identify a
compound block by name, you can change the name with the Edit > Block
Properties command, as described on page 17.

Creating a compound block

When you create a compound block, VisSim attaches connector tabs to the
compound block for each of the following situations:

e All unsatisfied connector tabs on the internal blocks (except global variables)
All satisfied connector tabs to external blocks

To create a compound block
Select the blocks to be encapsulated.

Choose Edit > Create Compound Block.

w b PV

Under compound name, enter a name. Avoid using the dot (.) character in the
name; VisSim uses it to separate compound block namesin thetitle bar. The
default name is Compound.

4. Click onthe OK button, or press ENTER.

Drilling into a compound block

The process of moving through and displaying the levels of a compound block is
referred to as drilling. Asyou drill into a compound block, VisSim adds the name of
the compound block to thetitle bar to help you keep track of where you are.

» Todrill down
1. Point to acompound block.

2. Click theright mouse button.

124



Chapter 11 Working with Large Diagrams

3. |If the compound block is password-protected, enter the password in the
Password dialog box, then click on the OK button or press ENTER.

Enter Password: ok I
Il Cancel |

The compound block remains unlocked until you close the diagram.
» Topopup
1. Point to empty screen space.

2. Click the right mouse button.

Hiding compound blocks
Y ou can selectively hide compound blocks while working in display mode.

» To hide compound blocks
1. Choose Edit > Block Properties.

2. Point to the compound block you want hidden in display mode and click the
mouse.

3. Activate the Hide In Display Mode parameter.
4. Click onthe OK button, or press ENTER.

5. Activate View > Display Mode.

Configuring pictures on compound blocks

The pictures that can be configured on compound blocks are graphical imagesin
.BMPfile format. Y ou can create them yourself or choose from the VisSim bitmap
library, which residesin VISSIM\BITMAP\ADIAGRAM. See Appendix E, “Working
with Bitmaps,” for pictures of these bitmaps.

» To configurea picture on a compound block
1. Choose Edit > Block Properties.

2. Point to the compound block on which the picture isto be configured and click
the mouse.

3. Click on the Select Image button and choose the bitmap image to be configured
on the block.

4. Click onthe OK button, or press ENTER.

125



Chapter 11 Working with Large Diagrams

126

5. Click on the OK button, or press ENTER when the Compound Properties dialog
box appears.

Labeling connector tahs on compound blocks

When you want to distinguish between the inputs and outputs on compound blocks,
you can assign labels to their connector tabs. When the View > Connector Labels
command is activated, connector labels are displayed on the block. In addition, when
you drill into it, those labels appear next to the input and output connectors on the
left and right side of the screen.

If you do not specify a connector label, the label defaultsto the class name specified
in the Connector Properties dialog box, if oneis specified.

» Toassign connector labels

1. Poaint to the connector tab on the compound block you want to label. The pointer
turnsinto an upward pointing arrow.

2. Double-click the mouse.
The Connector Properties dialog box appears.

Connector ||

Connection cla

Class Name: I =

c [ -]

™ Restrict connections to class members

Ok I Cancel |

In the Connector box, enter aname.
Click on the OK button, or press ENTER.

If you want the label to appear on the block, activate the Connector Labels
command in the View menu.

Dissolving a compound block

Use the Edit > Dissolve Compound Block command to de-encapsulate the blocks
one level below the current level. When you execute Dissolve Compound Blaock, the
blocks immediately below the current level move up to the current level. The blocks
remain highlighted until the next command is executed to make it easier to recreate
the compound block, in case you change your mind.

When you dissolve a compound block, VisSim maintains al internal wiring
connections.



Chapter 11 Working with Large Diagrams

To dissolve a compound block
Choose Edit > Dissolve Compound Block.

Point to the compound block and click the right mouse button.

w b Y

Click the mouse on empty screen space to exit this command.

Other things you can do with compound blocks
VisSim lets you do other things with compound blocks.

For information about See
Coloring compound blocks Page 267
Protect compound blocks Page 136

Embedding blocks

With embedding, you can include information created in one VisSim block diagram,
referred to as the source diagram, in one or more other block diagrams, referred to
as the destination diagrams. Each time the source diagram changes, the changes are
propagated in the destination diagrams.

When you embed a block diagram, a read-only version of the diagram isinserted
into the destination diagram along with alink to the source diagram. Y ou can drill
into the embedded diagram just as you would a compound block; however, you
cannot edit it. Edits can only be made to the source diagram.

Setting up a diagram to he embedded

Before you can embed a diagram, check that itstop level is asingle compound
block. If it's not, use the Edit > Create Compound Block compound to create one, as
described on page 124.

If you want to restrict access to the embed block, apply the protection to the
compound block, as described on page 138.

Embedding a block diagram

Embedding a block diagram involves dragging an embed block into the work area
and setting up the link to the sourcefile.

» Toembed ablock diagram

1. Open the destination diagram and move to the block diagram level where you
want to insert an embedded block diagram.

2. Drag an embed block into the work area.

127



Chapter 11 Working with Large Diagrams

Choose Edit > Block Properties.
4. Click the mouse over the embed block.

In the File Name box, enter the name of the block diagram file to be embedded.
If you do not see the file you want, click on the Select File button to search for
it.

6. Click onthe OK button, or press ENTER.

Editing an embedded block diagram

Y ou cannot edit an embedded block diagram itself. Instead, you open and edit the
source file to which the embedded diagram is linked. When you edit a sourcefile, al
embedded diagrams linked to that source file are immediately updated to reflect the
changes.

Reconnecting an embedded block diagram

You may lose alink if you move or rename the source file. If this occurs, you must
redirect the link to the appropriate location or file name.

» Toreconnect alink
Choose Edit > Block Properties.

1
2. Point to the embed block and click the mouse.
3

In the File Name box, enter the correct path or new file name. If you are unsure
of the path or file name, click on the Select File button to search for the file you
want.

4. Click onthe OK button, or press ENTER.

Adding block diagrams

128

Y ou can add another block diagram to the currently opened diagram using the

File> Add command. After you' ve added the block diagram, some blocks and wires
may overlap as aresult of this operation; use the mouse and Edit menu commands to
reposition them appropriately.

P Toadd ablock diagram to the current diagram

1. Openthe block diagram into which you want to add another block diagram.
2. Choose File> Add.
3

In the File Name box, type or select the name of the block diagram you want to
add. If you do not see the block diagram you want to add, select a new drive or
directory.



Chapter 11 Working with Large Diagrams

4. Click onthe OK button, or press ENTER.

An empty rectangular box appears that represents the block diagram. The
pointer is anchored to the box.

5. Movethe box to where you want the block diagram added.

6. Click the mouse.

Using variables to pass signals

Thevariable block lets you name asigna and transmit it throughout your diagram
without the use of wires.

Variables of the same name share signals. For example, in the diagram below, the
variablej isused in three different locations:

(i N ol
1
[i] cos nl
+ .
0 3 o 15 m
R Time (sec)
» T 0| x|
1
ok
* 1 | 1
0 3 FLU 1
R Time (sec)

The variable ] in the upper part of the diagram is the declared variable. Only
declared variables are alowed input signals. In addition, there can be only one
declared variable of agiven name. The other two j variables are referenced variables.
Wires cannot be fed directly into referenced variables; they receive their input from
the declared variable.

All variables can have any number of output signals.

Creating variables
ThevariabTle block islocated under the Blocks menu in the Annotation category.

» Tocreateavariableblock
1. Choose Edit > Block Properties.

2. Click the mouse over the variable block.

129



Chapter 11 Working with Large Diagrams

The Set Variable Name dialog box appears.

| =]
ok LCancel |

3. Do one of thefollowing:

To Do this

Create anew variable Enter anew name. To limit the scope of the
variable, preface the name with a colon (:)
character to make it local; two colon (::) characters
to make it definition-scoped, or no colonsto make
it global. (For information on scoping variables,
see the descriptions below.)

Reference an existing variable  Click on the bowN ARROW and choose a name from
the list. (For information on the scope of the
variables, see the descriptions below.)

4. Click onthe OK button, or press ENTER.

Naming a variable

It isnever agood ideato name a variable block -X, or anumber, like 1 or
2 or 3. Naming a variable -X leads to confusion with the -x block. Naming a
variable a number leads to confusion with the const block.

Scoping variables

In VisSim, you can define which portions of the diagram can reference a variable by
designating its scope. There are three types of scope: diagram scope, definition and
below scope, and level scope.

e Diagram scope indicates that the variable can be referenced at any hierarchical
level of the block diagram. Variables with diagram scope are referred to as
global variables.

o Definition and below scope indicates that the variable can be referenced at the
current hierarchical level, aswell as all levelsbeneath it. To identify definition-
scope variables, preface their names with two colon (::) characters.

e Level scopeindicates that the variable can be referenced only at the current
level of the block diagram. Variables with hierarchical level scope are referred
to aslocal variables.

130



Chapter 11 Working with Large Diagrams

Level scope

A variable with level scope cannot be referenced outside of its current hierarchical
level. Although level scoping isthe most restrictive type of scope, it actually has
several key advantages. By limiting the region over which variables can be
referenced, you can construct sections of a diagram without worrying about whether
your variable names conflict with other names used in other parts of the diagram. In
addition, users reading your diagram will know immediately that the variables’ use
islimited to asmall region.

Variables with level scoping are prefaced with the colon (:) character.

Definition and below scope

Giving avariable definition and below scope allows the variable to be referenced not
only at the hierarchical level of the diagram at which it was defined, but also at all
the levels beneath it. For example, if compound block A contains a definition scope
variable, all the sublevelsin compound block A are able to use the variable.

By using definition-scoped variables, you can copy or add subsystemsto an
existing diagram without breaking or misdirecting references.

To give avariable definition and below scope, preface its name with two colon (::)
characters.

Diagram scope

Variables with diagram scope are called global variables. Because global variables
reference any part of ablock diagram, you should exercise caution in your use of
them. Global variables can make a block diagram hard to maintain because they
increase the diagram’s compl exity.

In addition, global variables increase the chances of a conflict in names between
modules. For example, engineers working on different parts of alarge project may
choose the same name for different global variables. The problem won't surface
until each module is added to the master diagram.

Asarule of thumb, global variables should be used only when transmitting system-
wide constants or signals that would be laborious or visually messy to represent as
wires.

Making copies of global variables. When you make a copy of a compound block
containing aglobal variable with wired input, VisSim renames the copied occurrence
of the global variablein the following manner:

original-variable-bl ock-name@uni que-number

131



Chapter 11 Working with Large Diagrams

Finding variable definitions

To find where avariable is defined, use the Edit > Find command and activate the
Match Variable Definitions Only option.

Built-in variables
The following variable block names are built into VisSim:

Block name Description

$firstPass Generates an initial unit pulse on the first step of asimulation.

$lastPass Generates afina pulse on the last step of asimulation.

$runCount Holds the simulation iteration count for multiple simulation runs,
such as Monte Carlo simulations and parameter sweeps.

$timeStart Returns the start time of the simulation.

$timeStep Returns the step size of the simulation.

$timeStop Returns the stop time of the simulation.

Using path aliases to reference files

132

Asit nameimplies, a path aliasis another name for all or part of the full
specification of afile. You use path aliases to quickly insert frequently referenced
files— for example, map files, import files, and bitmap image files. Rather than
entering the compl ete file specification for each file, you can use path aliasesto
reference any part of the specification.

Y ou can a'so use path aliases whenever automatically updating information would
make maintaining your diagrams easier. For example, suppose an animate block
referenced numerous bitmap imagesin C\MY TEST\BMPS. If you moved the
location of the bitmap images to C:\DIAGRAMS\BITMAPS, changing each file
specification of each referenced bitmap would be afrustratingly long exercise. With
path aliasing, you'd only have to update the path alias once for VisSim to correctly
locate each bitmap image.

Creating path aliases

Y ou create path aiases using the Preferences command in the Edit menu and
clicking on the Path Aliasestab. The Alias=Path window lists all existing path
aliases. New path aliases are entered in this window.

» Tocreateapath alias
1. Choose Edit > Preferences.

2. Click on the Path Aliases tab.



Chapter 11 Working with Large Diagrams

Preferences  Path Aliases IAdansI
Alias=path

oK I Cancel | Lipply |

In the Alias=Path window, double-click the mouse over the ellipsis. The cursor
becomes an | beam.

Enter the path aiasin the following format:
path-alias=path

When entering path aliases, follow the MS/DOS rules for drive and directory
specifications. For example, to create an alias BmpDir that references the
\BMPS directory on your C: drive, enter:

BmpDir=C:\BMPS\PUMPS.BMP

Click on the OK button, or press ENTER.

Inserting path aliases in blocks

Y ou can use path aliases in any block that references afile. When you specify a path
alias, prefix it with adollar ($) sign. For example, to use the path alias BmpDir, enter
$BmpDir in the file specification box.

>
1

Toinsert a path alias

In the Properties dialog box for the block, position the insertion point where you
want to insert the path alias. (Typicaly, thisisthe File Name, Name, Bitmap
Image, or Image box.)

Enter the path alias, prefaced with a$ and followed by a backslash; then thefile
name.

Close the dialog box.

133



Chapter 11 Working with Large Diagrams

Maintaining an edit history

The Diagram Information command in the File menu helps you keep track of
important information about a block diagram as it is being developed. You can list
the author’ s name and attach comments or an edit history to the block diagram. Y ou
can also identify the block diagram by alonger, more descriptive name. The name
appearsin File Open and File Add dialog boxes when you select its DOS file name.

The Diagram Information command al so maintains statistics about the block
diagram, including its DOS file name, its byte and block size, its last modification
date, and the version of VisSim used to create it. Note that the Byte Size and Last
Modified fields are not updated until you save the block diagram.

» Toadd or view diagram information

1. Open the block diagram whose information is to be added to or viewed.
2. Choose File > Diagram Information.
3

You can add or change information in the Title, Author, and Comment boxes.
The statistical information can be viewed, but not edited.

4.  When you finish adding or viewing diagram information, click on the OK
button, or press ENTER.

Y ou can add or revise diagram information for the current block diagram at any
time.

Protecting your work

134

VisSim offers several levels of protection for your work:

e You can assign your block diagram a password to keep other users from
opening the diagram. Y ou can al so request or require that they open the diagram
in read-only mode.

e Inlarge project development, where multiple users are working on the same
diagram, you can assign password protection to particular parts of the diagram
to prevent other users from viewing the information. Y ou can also request or
require that they view the information in read-only mode.

If you decide to use a password to restrict access, make sure to write it down exactly
asyou entered it — passwords are case sensitive — and store it in a safe place.
Without the password, even you can’t access the information.



Chapter 11 Working with Large Diagrams

Protecting block diagrams

To assign a password to a block diagram and set options that control how much
access other users have to the diagram, choose the Diagram Information command in
the File menu.

Diagram Information

Title: I
Luthor. IKarEn Dramell

LComment; -

H
r~ Protection

Password: I
™ Locked [~ Bead Only

~ Statistic:

File Mame: Diagraml
File Version: 3
File: Size:
Last Modified
Totzl Blocks: &

LCancel

Password Protected: To prevent other users from opening the block diagram, type
apassword in the Password box and activate the Locked option. Only users who
know the password can open the diagram and make changesto it.

Read-Only Password Protection: To allow other users to open the diagram, but
prohibit them from making changes, type a password in the Password box and
activate the Read Only option. Only users who know the password can open the
diagram. Once opened, the diagram can only be viewed, however, it cannot be
changed.

Read-Only Requested Protection: To recommend, but not require, that other users
only view a diagram without making changesto it, activate the Read Only check
box. Although the diagram is opened in read-only mode, any user can de-activate the
read-only protection and edit the diagram.

P Torestrict accessto ablock diagram
Open the block diagram to which restricted accessis to be applied.

1
2. Choose File > Diagram Information.
3. Do one of the following:

e Tolock the diagram closed, enter a password in the Password box and
activate the Locked parameter.

135



Chapter 11 Working with Large Diagrams

136

N P Y O

e To makethe block diagram read-only, enter a password in the Password
box and activate the Read Only parameter.

A password can contain up to 10 characters and can include any combination of
letters and numbers. VisSim echoes an asterisk (*) for each character you type.
Passwords are case sensitive.

Click on the OK button, or press ENTER.
VisSim asks you to re-enter the password for verification.

To change or delete a password
Choose File > Diagram I nformation command.

In the Password box, select the row of asterisks that represent the existing
password and do one of the following:

e To change the password, type in a new password.
e To delete the password, pressthe DEL key.
Click on the OK button, or press ENTER.

If you entered a new password, VisSim asks you to re-enter the new password
for verification.

Protecting compound blocks

Restricting access to a compound block is similar to restricting access to a block
diagram. Y ou have the choice of password protection, read-only password
protection, and read-only requested protection. Y ou enter the level of protectionin
the Compound Properties dialog box.

s Compound Properties
-C

Compound ;l

d Name

P

Type Ctrl+ENTER to enter a new line

Pr

[ Locked ™ Read Only | [~ Use Bitmap

Password: Select Image... |

Bitmap

[~ Hide in Display Mode

oK | Cancel |




Chapter 11 Working with Large Diagrams

w b P Y

N P Y OO

Torestrict accessto a compound block
Choose Edit > Block Properties.

Point to the compound block you want protected and click the mouse.
Do one of the following:

e Tolock the compound block, activate the Locked parameter and enter a
password in the Password box.

e To make the compound block read-only, activate the Read Only parameter
and enter a password in the Password box.

A password can contain up to 10 characters and can include any combination of
letters and numbers. VisSim echoes an asterisk (*) for each character you type.
Passwords are case sensitive.

Click on the OK button, or press ENTER.
VisSim asks you to re-enter the password for verification.

To change or delete a password
Choose Edit > Block Properties.

Point to the compound block whose password you want to change and click the
mouse.

In the Password box, select the row of asterisks that represent the existing
password and do one of the following:

e To change the password, type in a new password.
e To delete the password, pressthe DEL key.
Click on the OK button, or press ENTER.

If you entered a new password, VisSim asks you to re-enter the new password
for verification.

To edit aread-only compound block with password protection
Choose Edit > Block Properties.

Point to the compound block that is read-only with password protection and
click the mouse.

In the Password box, select the row of asterisks that represent the existing
password and type in the correct password.

Click on the Read Only attribute to de-select it.

Click on the OK button, or press ENTER.

137



Chapter 11 Working with Large Diagrams

138

Protecting embed blocks

Password locking is a mechanism that prevents other users from drilling into and
viewing the contents of an embedded diagram. Only users who know the password
can unlock the embed block and view its contents.

Password locking is inherited the compound block in the source file. In other words,
you do not apply protection to the embed block itself, but rather to the compound
block in the source file.

>

1
2
3
4
>
1
2
3
4

Y o 0

N

Todrill into a protected embed block
Choose Edit > Block Properties.

Click the mouse over the embed block.
Enter the password.
Click on the OK button, or press ENTER.

To protect an embedded block diagram
Open the source file that contains the compound block to be protected.

Choose Edit > Block Properties.
Click the mouse over the compound block.
Activate the Locked parameter and enter a password in the Password box.

A password can contain up to 10 characters and can include any combination of
letters and numbers. VisSim echoes an asterisk (*) for each character you type.
Passwords are case sensitive.

If you do not enter a password, a user can subsequently unlock the embed block.
Click on the OK button, or press ENTER.
VisSim asks you to re-enter the password for verification.

To change or delete a password

Open the source file that contains the compound block to whose password is be
changed or deleted.

Choose Edit > Block Properties.
Point to the compound block and click the mouse.

In the Password box, select the row of asterisks that represent the existing
password and do one of the following:

e To change the password, type in a new password.

e To delete the password, press the DEL key.



Chapter 11 Working with Large Diagrams

5. Click on the OK button, or press ENTER.

If you entered a new password, VisSim asks you to re-enter the new password
for verification.

139



Chapter 12

Block Reference

The Blocks menu lists the standard blocks provided with VisSim. When you click on
the Blocks menu, most of the items that appear have afilled triangle (») next to
them. These items are block categories. Click on ablock category and a cascading
menu appears listing the additional blocks.

To makeit easier to find blocks in this chapter, they are presented in al phabetical
order, regardless of their block category. For most blocks, a mathematical functionis
included. The following table tranglates the symbols that may appear in the function:

Symbol What it represents
A Amplitude

e Naperian constant
dt Derivative with respect to time
Ib Lower bound

mod Modulus

s L aplacian operator
t Time

ub Upper bound

[ Freguency

X Input signal

y Output signal

Input signals are represented as X;, X,,...X,,, Where x; represents the topmost signal
entering the block. When n isomitted, x; isassumed. Output signals are represented

as yi,Ys,...Yn, Where y, represents the topmost signal exiting the block. When n is
omitted, y; isassumed.

141



Chapter 12 Block Reference

ER
* (multiply) ﬂl’

Y= Xk Xk L kX
Block Category: Arithmetic

The * block produces the product of the input signals. Inputs can be scalars or
vectors.

VisSim assigns onesto all unconnected inputs.

Multiplying vectors and matrices

To perform a single value summation of an element-by-element multiply of
two vectors, use the dotProduct block, as described on page 181.

To multiply two matrices, use the multiply block, as described on page
220.

Examples
1. Multiplication of two scalar inputs
Consider the equation y = 24 * 32, which can be realized as:

24
32

Two const blocks provide the values 24 and 32. When connected to a * block, the
product is 768.

Yy
*

[ | 768

2. Multiplication of a scalar and a vector

Consider the equation

y=24x

where x =[1 2 3]. This eguation can be realized as shown on the next page.

142



Chapter 12 Block Reference

24
48
72

A scalarToVvec block creates a three-element vector from the constant values 1, 2,
and 3. When the simulation runs, the * block multiplies al the elements of the
incoming vector line with the constant value 24.

3. Multiplication of vectors
Consider the equation:
W=XYyz

wherex =[-123],y=[3-22],and z=[6 2 -7]. This equation can be realized as:

1w

2] Mo e E—

El b

3 v 18
5 N - 9
2 3 )
(1 R

2] Mo T —

T

When the simulation runs, the * block performs an element-by-element
multiplication operation on the incoming vectors. For example, w(1) = x(1) * y(1) *
z(2), w(2) =x(2) * y(2) * z(2), and so on.

R

-X (negate)
y=—X

Block Category: Arithmetic

The -x block negates the input signal. Input can be scalar, vector, or matrix.

143



Chapter 12 Block Reference

144

Examples
1. Negation of a scalar

Consider the equation y(t) = - sin(t), which can be realized as:

\PLoT 1 (=] |3
1
negate y(t) = -sin(t)
0
{yit) ]
-1 1 1
] 1 2 3 4 <}
Time (sec)
\PLoOT 1 (] |3
1
t =ingt)
sin b .
-1 1 1 1 I
] 1 2 3 4 g
Tirne (sec)

A ramp block is used to access simulation timet, asin block generates sin(t), and a
-X block converts sin(t) to -sin(t). Both sin(t) and y(t) are plotted for comparison.

2. Negation of a vector
Consider the equation:
z=-X

wherex =[-1 5.6 4]. Thisequation can berealized as:

53y 1
2 5.6
3 -4

A scalarTovector block creates a three-element vector from the constant values
-1, 5.6, and 4. When the simulation runs, the -x block performs an element-by-
element negate operation on the incoming vector.

3. Negation of a matrix

Consider the equation:

Z=-X
2 -56 4
where X =(-12 21 -36
1 -87 64



Chapter 12 Block Reference

/ (divide)

This equation can be realized as:

-2 36
8.7 6.4

E3
<
w1
[}

When the simulation runs, the -x block performs an element-by-element negate

operation on the incoming matrix.
|}I
{
<=

X1

y:
X2

Block Category: Arithmetic

The / block produces the quotient of the input signals. The inputs can be scalars or
vectors. On the connector tabs, “I” represents the numerator x; and “r” represents the
denominator X,. If x; is unconnected, VisSim feedsit azero. If x, isequal to 0 or
unconnected, VisSim displays a“Divide by 0" message and highlights the offending

block in red.

Performing matrix inversions
To perform matrix inversions, use the invert block, as described on page
198.

Examples
1. Division of two scalar inputs
Consider the equation y = 24/32, which can be realized as:

24
32

/ [v]

-
Yy

145



Chapter 12 Block Reference

2. Division of a vector by a scalar

Consider the equation:

y =x/24

where x = [12 24 36]. This equation can be realized as:
12

24
36

[24] .

h 4 "\I: h 4
]

—

Yy

5
ﬂ—»@——»
15

When the simulation runs, the / block divides each element of vector x with the
constant value of 24.

3. Division of vectors
Consider the equation:
w = Xx/ly

where x =[12 24 36] and y = [6 12 18]. This equation can be realized as:

12
24
36

YVvY
[T
+

12
18

Wt
w
=

2

Yy

When the simulation runs, the / block performs an element-by-element division
operation on the incoming vectors. For example, w(1) = x(1)/y(1), w(2) = x(2)/y(2),
and so on.

146



Chapter 12 Block Reference

< (less than) E <P

1 ifx <x,
V=10 it 2%,
Block Category: Boolean

The < block produces an output signal of 1 if and only if input signal x; islessthan
input signal x,. Otherwise, the output is 0. On the connector tabs, “I” represents x;
and “r" represents Xo.

If you click the right mouse button over the < block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simpleif-then-else construct
Consider avariable y such that:
Ift<4theny=1;elsey=0

Assumethat t is simulation time. This system can be realized as:

y(t) [_ O] =

Time (sec)

By multiplying a constant value 1 with the output of the < block, y is guaranteed to
assume avalue of O until the inequality istrue. When the inequality istrue, y
assumes a value equal to the output of the * block.

147



Chapter 12 Block Reference

2. Modified if-then-else construct

The previous example can also be realized as:

i .. . 1
' Ly merge |— {7

Time (sec)

The key difference in implementation is the use of amerge block rather than a *
block. The merge block explicitly depicts the if-then-else structure; the * block isa
shortcut and can lead to confusion.

=
<= (less than or equal to)
1 ifx <x,
y:{o if %, > %,

148

Block Category: Boolean

The <= block produces an output signal of 1if and only if input signal x; islessthan
or equal to input signal x,. Otherwise, the output is 0. On the connector tabs, “1”
represents x; and “r” represents x,. The <= block accepts two scalar inputs.

If you click the right mouse button over the <= block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simpleif-then-else construct
Consider avariable y such that:

If x<0.5theny=cos(3t); elsey=0

wheret issimulation time. Let x be a unit step delayed by 7 sec, represented as
u(t - 7). This system can be realized as shown on the next page.



Chapter 12 Block Reference

o

_ O x
2
ut - 7) 1 If( x <= 0.5) :
: b
; merge—b@—bo
(o}
Else... 1 . . . .
o] 2 4 G 8 10
Then... Time (s2¢)
‘x{t) and cos(3t) _1O|x
3w cos >
t 3t cos( 3t ) 1
IANANA
v AVIAVIRVALY)
2 4 ] g 1

Time (sec)

Until the onset of the step input at t = 7 sec, the Boolean inequality x < 0.5 evaluates
to true, and y takes on avalue of cos(3t). At t = 7 sec, the Boolean inequality
evaluates to false and remains false for the duration of the simulation. Consequently,
from this point onwards, y takes on the value of 0. The lower pTot block monitors

the outputs of the cos and variable x blocks.

== (equal to)
1 i =X
=10 if X, # X,

Block Category: Boolean

The == block is useful for evaluating the Boolean == equality. This block accepts
two scalar inputs labeled “1” (for x.)and “r” (for x,). The output of the == block is 1
if and only if input “1” isidentically equal to input “r;” otherwise, the output is zero.

149



Chapter 12 Block Reference

150

Boolean equality comparisons of floating point variables and non-
integer constants

Aswith programming in any language, it is generally not agood ideato
perform Boolean equality comparisons involving floating point variables
and non-integer constants. These types of comparisons should be converted
to Boolean inequality comparisons. (For example, {If position is equal to m,
then...}) should be converted to {If position is greater than or equal to< ©t
rounded off>, then...}.) The reason for thisis because a floating point
variable, such as position, is rarely exactly equal to a non-zero non-integer
value, particularly if it is obtained by solving one or more equations.

If you click the right mouse button over the == block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Comparing constants

Consider avariable y such that:

If x=0.5theny=cos(2t); elsey=0

wheret issimulation time. Let x be a step function of amplitude 0.5, delayed by 3
sec. Thisis usually represented as 0.5 u(t - 3). This system can be redlized as:

_ O} x
0.5 3 :
S u(t-3) f(x—10.5)
L = b i
r
t
—fb merge —b@—b o
[}
Else... 1 . . .
o] 2 4 [¢] 8 10
Then... Tirne (sec)
ix(t) and cos(2t) _ O %
>
t 2t cos{ 2t ) 1
'- ’,1 L L L
o] 2 4 [¢] 8 1

o]
Time (sec)

Until the onset of the step input at t = 3 sec, the Boolean equality x == 0.5 evaluates
to false, and y takes on avalue of 0. At t = 3 sec, the Boolean equality evaluates to
true, and remains true for the duration of the simulation. Consequently, from this



Chapter 12 Block Reference

point onwards, y takes on the value of cos(2t). The lower pTlot block is used to
monitor the outputs of the cos block and the variable x.

2. Comparing a floating point variable with a non-integer constant

In acollision detection problem, if position x of amassin motion is equal to =, then
acollision is assumed to have occurred with an immovable wall that is located at

x = . Furthermore, the position of the mass is assumed to be given by the solution
of the following first order differential equation:

% = sin(x)

Theinitial condition is assumed to be x(0) = 3.0. It is tempting to realize this system
as.

|
<
0: Mo collision
3.1414549 1: Collision
pi
3 »| 314158
position of mass: x
' Positi f x
- R [0 31415026533
’ position of mass: x
315 10 decimal places
3.10
3.05
BDD 1 1 1 1 1 1

1
0 15 g 75 10 125 15 17.5 20
Time (sec)

From the result shown in the pTot block, at around t = 7 sec, the mass arrives at the
boundary located at &. However, the collision detection logic, using an == block that
compares x with a constant value of m, never detects the collision. Thisis because
the final mass position, as obtained from the output of the integrator, is
3.141592653, which is not equal to 3.14159.

Itisclear from the pTot block, that for all practical purposes, the mass collided with
thewall around t = 7 sec. To capture this reality in the simulation, convert the
Boolean equality comparison:

If x = 3.14159 then...
to a Boolean inequality comparison:
If x> 3.1415 then...

151



Chapter 12 Block Reference

I= (not equal to)

152

After reducing the const block to four decimal places with no round-off, the system
can beredized as:

0: Mo collision
1: Collision

i

x »{ 3.14150

position of mass: x

: Position of X
osition of mass [0 31415926533

position of mass: x
10 decimal places

1 | 1 |
248 1 Fis 10 1248 18 174 20
Time (sec)

Except for replacing the == block with the >= block, this diagram is similar to the
previous one. In this case, the collision detection logic detects a collision around
t = 8 sec. Obvioudly, the time at which the collision is detected depends on the

number of decimal places retained for the T approximation.

1 ifx #x%
Block Category: Boolean

The !'= block produces an output signal of 1 if and only if the two scalar input
signals are not equal. On the connector tabs, “1” represents x; and “r” represents Xo.

If you click the right mouse button over the != block, the Boolean block menu
appears allowing you to assign a different function to the block.



Chapter 12 Block Reference

Examples

1. Comparing constants
Consider avariable y such that:

If t#0.5theny=cos(t); elsey=0

wheret is simulation time. This system can be realized as shown on below.

_|Ofx
2
. It ({x!=0.5) ’
L b
E# merge —m{y | ol
[c]
Else... ) | | ‘
o 5 1 15 2
Time (sec)
Then...
_|Of x
2
1
cos >
O+
cos(t)
1 1 1 L
o] 5 1 1.5 z
Time (sec)

Until the value of t reaches 0.5, the Boolean inequality t # 0.5 evaluates to true, and
y takes on avalue of cos(t). At t = 0.5 sec, the Boolean inequality evaluatesto false,
and at the very next time step, returns to true, and remains true for the duration of the
simulation. Consequently, at the moment t = 0.5 sec, y takes on the value of 0, and at
every other point, y is equal to cos(t).

> (greater than) E > P

1 ifx >X%,
V=10 ifx <%

Block Category: Boolean

The > block is useful in evaluating the Boolean > inequality. It accepts two scalar
inputs, labeled “I” and “r.” The output of the > block is 1 if and only if input
“I” > input “r;” otherwise the output is zero.

153



Chapter 12 Block Reference

If you click the right mouse button over the > block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simpleif-then-else construct
Consider avariable y such that:
Ift>2theny=7.2;elsey=0

Assume that t is simulation time. This system can be realized as:

Time (sec)

By multiplying a constant value of 7.2 with the output of the > block, y is guaranteed
to assume avalue of 0 until the inequality is true. When the inequality istrue, y
assumes a value equal to the output of the * block.

2. Modified if-then-else construct
Using the above equation, it can also be realized as:

_ (O] =
8
&
L & b \

' il merge M7 —>
£ 2
o . . ‘
Then... a 2 4 6 8 10
Else Time (sec)

The key difference in implementation is the use of amerge block rather than a *
block. The merge block explicitly depicts the if-then-else structure, whereas the *
block is a shortcut and can lead to confusion.

154



Chapter 12 Block Reference

o
>= (greater than or equal to)

12X,

y_{o if X, < X,

Block Category: Boolean

The >= block produces an output signa of 1if and only if input signal X, is greater
than or equal to input signal x,. Otherwise, the output is 0. On the connector tabs, “I”
represents x; and “r” represents x,. The >= block accepts two scalar inputs.

If you click the right mouse button over the >= block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Simpleif-then-else construct
Consider avariable y such that:

If x>05theny=gin(t); elsey =1

wheret issimulation time. Let x be aunit step delayed by 3 sec. Thisis usually
represented as u(t - 3). This system can be realized as:

Gy mEm
2
utt - 3) TF( x 5= 0.5)
- b :
t> merge —b@—b
[ ' N
Else... 1 . h L L
o] 2 4 & 8 10
Time (zec)
Then...
| ix{t) and sin(t) _ HEIHE

sin B

_[O
t sin( t ) -
’- b,l 1 1 1 1
2 4 & 8

o] 10

2
1

Time (sec)

Until the onset of the step input at t = 3 sec, the Boolean inequality x = 0.5 evaluates
to false and y takes on avalue of 1. At t = 3 sec, the Boolean inequality evaluatesto

155



Chapter 12 Block Reference

1/X (inverse)

156

true and remains true for the duration of the simulation duration. Consequently, from
this point onwards, y takes on the value of sin(t).

DX >

y="=
X

Block Category: Arithmetic

The 1/x block produces the inverse of the input signal. The input can be scalar,
vector, or matrix.

Computing the matrix inverse of a matrix

Usethe invert block to compute the matrix inverse of a matrix. If a vector
or matrix isfed into an 1/x block, the result will be an element-by-element
inversion of the vector or matrix (that is, [one divided by the element]
operation). Thisis not equivalent to a normal vector pseudo-inverse
operation or a normal matrix inverse operation.

Examples
1. Computation of 1/X of a scalar
Consider the equation y= 1/25, which can be realized as:

42002

The incoming constant value of 25 resultsin 1/25 = 0.04.
2. Computation of 1/X of a vector

Consider the equation:

z=1y

wherey =[-1 5.6 4], and where an element-by-element inversionisimplied. This
equation can be realized as:

S -1
2 ] 178571
] 25




Chapter 12 Block Reference

abs

An element-by-element inverse operation is performed on the three elementsin the
scalarToVvec block.

3. Computation of 1/X of a matrix

Consider the equation:

Z=1Y
2 -56 4
where Y =|-12 21 -36
1 -87 64

This can berealized as:

a - 178571 25
-.833333 47619 - 277778
1 - 114843 (15625

When the simulation runs, the 1/x block performs an element-by-element inverse
operation on the incoming matrix.

[ abs [>

y=[X
Block Category: Arithmetic

The abs block produces the absolute value of the input signal. The inputs can be
scalars, vectors, or matrices.

Examples
1. Absolutevalue of a scalar

Consider the equation y = abs (sin (t)), which can be redlized as shown on the next
page.

157



Chapter 12 Block Reference

158

| SINCT) O] x|

pr sin(t) >

1 1 1 1 1
o 2 4 & g 10

Titne (sac)

'Y = ABS (SIN (T))

vy =agbs {sin{t) )
abs [ |

Time (zec)

The resultsin the two p1ot blocks show that the abs block computes the absolute
value of the input signal.

2. Absolute value of a vector

Consider the equation:

w = abs (X)

where x = [-7 1 -2.2]. This equation can be realized as:

el W‘ 7
1 2 Bl e P iy 1
-2.2 3 2.2

When the simulation runs, the abs block computes and outputs an element-by-
element absolute value of the vector x.

3. Absolutevalue of amatrix

Consider the equation:
Z =abs(Q)

where Q = [ } . This equation can be realized as shown on the next page.

22 -33



Chapter 12 Block Reference

acos

[

Four const blocks provide the vector element values of Q through a
scalarTovector block. When the simulation runs, the abs block computes the
element-by-element absolute value of the incoming matrix.

[+ acos [>

y = arccosx

Block Category: Transcendental

The acos block produces the inverse cosine of the input signal. The output is an
anglein radians.

Examples
1. Computation of cos’(1) = 0; cos*(0) = n/2
This equation can be realized as:

acos ——p 0]
[T—mw[acos —»] TE71]

B
i T571
iz

Two acos blocks are used to compute the inverse cosines. For comparison, the
constant value of ©t/2 is generated by connecting two const blocks, set to 22 and 14,
tothe“l” and “r" inputs of a / block. From the results obtained, the acos blocks
yield correct values for the angles.

159



Chapter 12 Block Reference

and

160

E and [>
y = X, bitwise AND X,

Block Category: Boolean

The and block produces the bitwise AND of two to 256 scalar input signals.

If you click the right mouse button over the and block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples
1. Threevariableand
Consider avariable y such that:

Ifaz6andb>22and c<7, theny=cost); elsey=0

wheret issimulation time. Furthermore, let t be the input to all three parameters a, b,
and c. This system can berealized as:

oo merge —y [—
.
10 L 1 1 1

Time (sec)

1.0
5
cos > e
-5
10 . L L L
o]

2 4 & 8 10
Time (sec)

The output of the and block is true only when al the three inputs are true. This
happensintheranget = (2.2, 7), except for the instant t = 6. Thisresult is apparent
fromthetop plot block. Thevariable yisequal to cos(t) intheranget = (2.2, 7).
Attheinstantt = 6, variable ais momentarily false, and consequently, y = 0 at

t = 6, since the output of the and block evaluates to false at that instant.



Chapter 12 Block Reference

animate

asin

animate

TV

Block Category: Animation

The animate block lets you animate an image during simulation. For more
information, see page 77.

[ asin [>

y=arcsinx
Block Category: Transcendental

The asin block produces the inverse sine of the input signal. The output is an angle
in radians.

Examples
1. Computation of sin(1) = n/2; sin(0) =0
This equation can be realized as:

[0} 0]
1.671

s
k. 1571
pif2

Two const blocks, set to 0 and 1, are fed to the asin blocks. For comparison, the
constant value of /2 is generated by feeding two const blocks, set to 22 and 14,
into the “I” and “r” inputs of a/ block. From the results obtained, the as1in blocks
yield correct values for the angles.

161



Chapter 12 Block Reference

atan2

162

E atan2 [>

y = 4quadarctan (Xq, X,)
Block Category: Transcendental

The atan2 block computes the four quadrant inverse tangent of the input signals.
The atan2 block uses the signs of both input signals to determine the sign of the
output signal. The output is an angle in radians.

Examples
1. Computation of tan™(e<) = /2

This equation can be realized as:

1.633e+07168 | Ratio of Inputs (x1 /x2)

1.871

Angle in Radians

[ 80] Anglein Degrees

To convert radians to degrees, the angle in radians is multiplied by
(180/m) = 57.2958.

Since the atan2 block uses the value of xy, the signs of x; and X,, and the ratio x./x»
in computing the inverse tangent, the result depends on all these parameters. In the
current case, since theratio isinfinity, atan2 computes the inverse correctly to be
7t/2 radians, or 90°. Also, in the current case, x; can be any positive value, since its
ratio with O will be infinity, regardless of itsvalue.

2. Computation of tan™(-1): quadrant dependency

Using the same configuration in the above example, tan™(-1) can be realized as:

Ratio of Inputs (x1/%3)

-.7854

Angle in Radians

Angle in Degrees



Chapter 12 Block Reference

hessel

Here, the angle obtained is -.7854 radians, or -45°, because the atan2 block
determines that the angle lies in the fourth quadrant. However, it isimmediately
apparent that the same ratio of -1 can be obtained by flipping the signs on x; and x;:

Ratio of Inputs (x1/x2)

2.356

Angle in Radians

Angle in Degrees

In this case, the atan2 block uses the relative signs of x; and x, to determine that the
angle liesin the second quadrant, and yields an angle of 180 - 45 = 135°, or 2.356
radians.

[+ bessel [ >

y = bessel X
Block Category: Transcendental
The bessel block generates the Bessel function of order n.

bessel Block Properties
Order IE

Ok I LCancel | Help |

Order: Setsthe order of the Bessel function. Specify the order as an integer. The
default isO.

Examples
1. Approximation of sin(asin ¢)

Bessel functions come up frequently in the analysis and solution of nonlinear
differential equations. Consider the following approximation:

sin(asing) = Zi o (@) sin[(2n+1)g]

n=0

163



Chapter 12 Block Reference

164

where a and ¢ are parameters, and J, is a Bessel function of order m. Such
approximations are a part of the standard procedure for obtaining approximate
analytical solutions to equations of the type:

U+ 2gusinu+u= KcosQt

These eguations are used in the harmonic analysis of forced oscillations of single
degree of freedom systems.

The above approximation can be realized as:

346234

Exact Solution

Bessel Approximation:
Bessel Approximation:
Bessel Approximation:
Bessel Approximation:
Bessel Approximation:
Bessel Approximation:

346234

Bessel Approximation

| = |eofra|—=|=

YYYYYY

| | eofra] =|=
S|IS|IS|IS|S|S

Two const blocks produce n/4 and 0.5 as the values for ¢ and a, respectively. The
sine of phi is multiplied by a and the result is fed through another sin block to
compute the exact solution.

Six const blocks, set to 0 through 5, generate different terms of the infinite series
approximation. In this case, only the first six terms of the series are retained. Each of
these const blocksis connected to a compound block, which has the following
internal structure:

The const block feedsavalueto alocal variable :n. The output of :nis
connected to again block set to 2. The output of the gain block, and the output of
aconst block set to 1, are fed into two inputs of a summingJunction block. The
output of the summingJunction block and the output of variable phi are
connected to a * block, to compute the term (2n+1)¢. The variable ais connected
to abessel block whose internal order is set to the correct value (0, 3, 5, 7, 9, or 11,
depending on the value of :n).



Chapter 12 Block Reference

bezel

At thetop level, the outputs of the six compound blocks are summed using a six
input summingJunction block, and the output of the summingJunction block is
connected to again block set to 2. The output of the gain block is connected to a
dispTlay block.

From the results obtained, it is proven that by retaining the first six termsin the
approximation, very close agreement can be obtained with the actual value of
sin(asin o).

bezel

Block Category: Annotation

The bezel block is an effective way to add background characteristics, such as
operator control panels, to your screen. Designed to be used in display mode, the
bezel block accepts bitmaps or background color specifications. When display
modeisturned on, beze blocks act as background and appear beneath other
blocks.

When display mode is turned off, you can resize a beze1 block by dragging on its
borders. If abitmap is associated with the beze1 block, it initially assumesthe size
of the bitmap. For solid color backgrounds, the chosen color fillsin the bezel area
and can also be resized. When you turn on display mode, the sizing border goes

away.

Bezel Properties
i~ File Name oK. I
Il LCancel |

Image.. Help |

— Calor
™ Use Solid Colar

Seleet Calnr | -

File Name: Indicates the name of the .BMP file used as the background bezel. Y ou
can type the file name directly into this box or select one using the Image button.

Color: Letsyou use asolid color as the background for the bezel. To select acolor,
activate Use Solid Color and click on the Select Color button to choose a color.
When Use Solid Color is not activated, the beze1 block defaults to the name of the
.BMP file specified in the File Name box.

165



Chapter 12 Block Reference

huffer

166

D buffer

Block Category: Matrix Operations

The buffer block places a sequence of valuesin abuffer based on the buffer
length, the time between successive samples, and the duration of the smulation. The
buffer block accepts a single scalar input and produces a single vector output. It is
useful for performing basic digital signal processing operations.

Vector Buffer Properties
Buffer Length:
dT: ID.D1
Ok I Cancel |

Buffer Length: Determines the number of samples; that is, the size of the buffer.

dT: Determines the time between successive samples; that is, the rate at which
samples of the incoming signal are collected and placed in the buffer.

Examples
1. Basic buffer operation

Consider the following buffer block, with a buffer length of 4 and time between
successive samples of 0.01.

Ze-2 le-2 0 0]
rarmp buffer length: 4 display of the buffer output vector
dT: 0.01

For simplicity, let the simulation step size be equal to 0.01. If theinput to the
buffer isan arbitrary non-zero signal, such as a ramp signal, then after two
simulation time steps, the output of buffer isavector of length 4, with the first two
elements containing non-zero values and the remaining two still at zero. At the very
next time step, the simulation appears as:

3e-2 2e-2 le-2 0]
ramp buffer length: 4 display of the buffer output vectar
dT: 0.01



Chapter 12 Block Reference

The previous values are pushed down the vector by one cell, and the top cell is
occupied by the latest sample. Once the simulation goes beyond four time steps, the
output will be afull vector.

Obvioudly, if theinput signal itself is zero for some points, those values will be
reflected accurately in the output.

2. Computation of FFT and inverse FFT

Consider a simple example, where a sinusoidal signal is converted to frequency
domain via FFT, and then reconstructed using the IFFT.

-buffer‘ it Founer Coefficients vs. Time !E[-
200
buffer length: 128 V >S5
dT: 0.01

T1me (s e c)

FFT coefficients (Top 4)

ifft | o]
: Original Signal M= E : Signal Reconstructed by IFFT [H= E
1 1
Cob——° °

sinusoid

1 I 1 1 1 1 1 1 1 1
0 2 4 & = 10 0 2 4 & g 10

Time (sec) Time (zec)

A sinusoid block generates a sinusoid signal with afrequency of 1 rad/sec. The
signal is passed through a buffer block of length 128 samples and atime between
successive samples of 0.01. The output of the buffer block is connected to an fft
block, which computes a 128-sample FFT of the original sinusoid at a sampling rate
of 0.01.

The output of the fft block is Fourier coefficients. The individual coefficients are
accessed using avecToScalar block. Thefirst four coefficients are plotted to show
their variation with time.

Signal reconstruction is performed by feeding the output of the fft block to an
ifft block to compute the IFFT. The output of the i fft block isavector of length
128 samples. The contents of this vector are just 128 sinusoid reconstructions, with
each sinusoid trailing the preceding sinusoid by an amount equal to the sampling
rate.

Thefirst element in the i fft output vector does not have any delay because zero
time has elapsed between the FFT and IFFT phases. In most real-world situations,

167



Chapter 12 Block Reference

button

168

however, there isasmall, non-zero delay between the input signal and its
reconstruction that is introduced by the processor performing the numerical
computations of FFT and IFFT algorithms.

button [>

y = state—1
Block Category: Signal Producer
The button block lets you dynamically insert signal values during a simulation.

Y ou can set the number of states that a button block has, from two to a maximum
of 16. Y ou can also associate a bitmap with any of the states. The button block
toggles between white and red if it is a 2-state button and there are no bitmaps

associated with it.

The button block also provides cycle through, pie area, push button horizontal, and
vertical hit testing.

Button Properties [ x|

Mumber of States [2- 18] @

— Bitmap:

States:
state 1

Image. |
File Mame:

Block Mame: I

—Hit Testing

& Cucle € Verlical
 Pie  Horizontal Cancel
" Push Button Hel
elp

Number Of States[2-16]: Indicates the number of states for the button block.
The maximum allowable states is 16. The number of listed states in the States box is
determined by the value entered in the Number of States box.

Bitmaps: Letsyou associate a bitmap file with the selected state. To make an
association:
1. From the States box, select a state.

2. Inthe File Name box, enter the bitmap file name to be associated with the state.
If you do not know the name or location of thefile, click on the Image button to
select one. A picture of the selected bitmap appears to the right of the States
box.



Chapter 12 Block Reference

case

Block Name: Indicates a name for the button block. The name appears only when
there is no bitmap associated with the block.

Hit Testing: You have the choice of five hit testing methods.

e CycleThrough: Causesthe state to increase by 1 each time you click the right
mouse button over the block. When the maximum state value is reached, the
next mouse click changes the state back to 0.

e Pie: Dividesthe block into anumber of pie-shaped wedges equal to the number
of states. When you click the right mouse button over a particular wedge or
when you drag the mouse over the button block, the state changes. States
advance in a clockwise direction with State O at the top.

e Vertical: Dividesthe block into a number of vertical wedges equal to the
number of states. When you click the right mouse button over a particular
wedge or when you drag the mouse over the button block, the state changes.
State 0 corresponds to the bottom wedge; state N corresponds to the top wedge.

e Horizontal: Dividesthe block into anumber of horizontal wedges equal to the
number of states. When you click the right mouse button over a particular
wedge or when you drag the mouse over the button block, the state changes.
State 0 corresponds to the leftmost wedge; state N corresponds to the rightmost
wedge.

e Push Button: Activates state 1 while you hold down the mouse button. When
you release the mouse button, it activates state 0. Push button hit testing only
supports a two-state button block.

case

Y =Xni2
Block Category: Nonlinear

The case block lets you specify an unlimited number of execution paths based on
the value of asingle input, called the case input value. The case input valueis the top
input to the block and is labeled case. The remaining inputs are the possible
execution paths. They are labeled O through n.

The main application of the case block isin the construction of large nested if-else
decision structures, where regular if-else constructs using Boolean blocks become
too cumbersome.

When you want to output a particular element in amatrix, use the index block.

169



Chapter 12 Block Reference

Caseinput value: The following rules apply to values fed into the connector tab
labeled case:

e Thecaseinput value must be scalar. If anon-integer valueisfed intoit, itis
truncated. For example, 0.999 istruncated to O.

e If the caseinput value targets an out-of-range input, the case block returns an
error. For example, an error resultsif the caseinput value is 5 for a four-element
case block.

o |f the case input value targets an unconnected input, the case block outputsaO.

Scalar and matrix output: With the exception of the case input, al other inputsto
the case block can be scalar, vector, or matrix.

Examples

1. Implementation of five scalar branches
Consider the decision tree:
IfJ=0,thenY = A;

else

IfJ=1,thenY =B;

else

IfJ=2,thenY =C;

else

If J=3,thenY =D;

else

IfJ=4,thenY =E;

If A, B, C, D, and E are assumed to be constant values equal to 7, 14, 21, 28, and 35
respectively, the decision tree can be realized as:

>
7 p 4] >
14 Bl >
21 p C »
28 » D |
35 ;E’::

Six const blocks produce values for the variab1e blocks named J, A, B, C, D, and
E. The outputs of these variables are connected to a case block, with J connected

170



Chapter 12 Block Reference

to the caseinput, and variables A, B, C, D, and E connected to inputs 0, 1, 2, 3,
and 4 respectively. The output of the case block isfed through a variable named
Yandintoadisplay block.

Since Jissetto 3, thevariable D is presented to the output as expected, and
consequently, Y takes on the value of D, namely 28.

2. Implementation of three matrix branches

Consider the following part of the decision tree presented above:
IfJ=0,thenY =A;

else

IfJ=1,thenY =B;

else

IfJ=2thenY =C;

If youlet A, B, and C be:

oo defs et

the decision tree can be redized as shown below.

0 S o
0 1.2 i
5 ot 0 o 1 5]
0 22 g " 0 1
[1F——ms-v
12
I
S¥
12 N
. »{C |
22

Eight const blocks generate the elements of the three matrices, represented as three
scalarTovector blocks. Thevariable Jisset to 1 andisfed into the case input
of acase block. The outputs of variables A, B, and C are wired to inputs O, 1, and 2
of the case block. The output of the case block isconnectedto avariable Y,
which iswiredto adisplay block.

1M



Chapter 12 Block Reference

comment

const

172

Since Jis set to 1, the contents of variable B are presented at the output of the case
block such that Y = B.

Block Category: Annotation

The comment block adds a comment to the diagram. When you position the pointer
over the block and click the right mouse button, the pointer changes into a vertical |-
beam, indicating that you're in text-entry mode. As you insert text, VisSim
automatically scrollsthe text if it runs out of room in the viewable region of the
block. To correct or remove text, use the DEL and BACKSPACE keys. To exit text-
entry mode, click the right mouse button on the comment block a second time.

Y ou can also copy text from an application fileinto a comment block. For example,
to copy text from aWORD document, highlight the text to be copied and press
CTRL+V. In the comment block, position the I-beam where you want to insert the
text and press CTRL+C.

To retain the format of the copied text, activate the Use Rich Text Format under the
Preferences tab in the dialog box for the Edit > Preferences command. If Use Rich
Text Format is not activated, the text will revert to the text format specified with the
View > Fonts command.

When reading a comment, use the scroll bar to move text in and out of the viewable
region. To resize a comment block, drag on its edges.
1>

y = constant value

Block Category: Signal Producer

The const block generates a constant signal.

const Block Properties
Walue I

0K I LCancel | Help |

Value: Indicatesthe value of the output signal. The default is 1.



Chapter 12 Block Reference

constraint

convert

(HI

[>4 constraint

Block Category: Optimization

The constraint block is used to solve an implicit equation. For more information,
see Chapter 8, “Performing Global Optimization.”

D convert

Block Category: Arithmetic

The convert block converts the data type of the input signal to one of the
following: char, unsigned char, short, unsigned short, int, long, unsigned long, float,
or double. To check for overflow errors, activate Warn Numeric Overflow under the
Preferences tab in the dialog box for the Simulate > Simulation Properties command.

| g
[ o ] cencal |
[ cos [>
y = COSX

Block Category: Transcendental

The cos block produces the cosine of the input signal. The input signal must be
represented in radians.

Examples
1. Computation of cos(26) = 2cos?(0) - 1
With 6 chosen to be nt/3, the above trigonometric identity can be realized as:

10472 theta cos +
| —>{thets |—»| L =

pif3
2 cost2( theta) - 1

[ 2>—»{ cos |—» -5 |

cosf 2 theta)

173



Chapter 12 Block Reference

>{ cosh [>

cosh
e +e”
2
Block Category: Transcendental
The cosh block produces the hyperbolic cosine of the input signal. The input signal
must be represented in radians.
Examples
1. Computation of cosh(26) = cosh?(6) + sinh?(8)
With 6 chosen to be &, the above trigonometric identity can be realized as shown
below.
pi cosh*2( theta) + sinh*2{theta)
[ 2> cosh 267 747 |
cosh{ 2 theta)
= cost
cost

Block Category: Optimization

The cost block measures the cost function for parameter optimization. For more
information, see Chapter 8, “Performing Global Optimization.”

174



Chapter 12 Block Reference

crossDetect

[ crossDetect [>

—1 if xcrosses crosspoint with neg. slope
y=4 1 if xcrosses crosspoint with pos. slope
0 otherwise

Block Category: Nonlinear

The crossbetect block monitorsits input value and compares it with a user-
specified crosspoint. When the input value crosses the crosspoint, the crossbetect
block outputs either +1 or -1, depending on whether the crossover occurred with a
positive slope or negative slope, respectively. If acrossover is not detected, the
crossbetect block outputs 0.

crossDetect Block Properties
Crosz Point [§

oK I LCancel | Help |

Cross Point: Represents the value that, when x crosses it, causes the output signa
togotol, -1, or 0. ThedefaultisO.

Examples

To obtain correct results from the examples described below, increase the point
count for the pTot blocksto at least 1,000.

1. Detection of zero crossover of a sinusoid
Consider the equation:
y=1ifsin(t)=0,elsey=0

175



Chapter 12 Block Reference

176

This equation can be realized as:

1
sin p O
t Sty
1 1 1 1 1
0 2 4 & 2 10
Time (zec)
i CROSSDETECT OQUTPUT _[Oofx
1 —'7
—p 0
1 1 1 1 1
0 2 4 & 2 10
Time (zec)
LY(T) O] x|
2
abs v ! ‘ ‘ ‘
O 1 1 1 1
0 2 4 & 2 10
Time (sec)

As can be seen from the crossbDetect block output, three O crossings are detected
in the smulation. The first and third O crossings occur with negative slope (that is,
the value of sin(t) is decreasing, as it approaches zero), while the second 0 crossing
occurs with positive slope (that is, the value of sin(t) isincreasing as it approaches
zero.) Consequently, the first and third O crossing events are -1, and the second 0
crossing eventis+ 1.

However, sincey isrequired to be equal to +1 whenever sin(t) = 0, irrespective of
the slope, the output of the crossbetect block is passed through an abs block to
extract the absolute value, and this output is defined as the variabTle y. The bottom
pTlot block showsthat y = 1 when sin(t) = 0; otherwisey = 0.

2. Detection of non-zero crossover with externally set crosspoint
Consider the equation:
y=1ifsin(t) =0.5,elsey=0

This equation can be realized exactly as above by setting the internal crosspoint on
the crossbetect block to 0.5. Unfortunately, this may not be acceptable in some
cases, particularly when the crosspoint itself isto be computed as a part of the
simulation. In such cases, the crosspoint must be set externally, as shown below:



Chapter 12 Block Reference

O] x
1
» OF
sin b
sin(t )
t 1 1 I 1 1
o] 2 4 & 2 10
Time (sec)
| cROSSDETECT QUTPUT (=] 53
1
¢
-
1 1 1 1 1
o] 2 4 & g 10
Time (sec)
_ O] x
z
b i
- . ‘ ‘ ‘ ‘
0 | | | |
0 2 4 6 g 10
Time (sec)

The key difference here is that the output of the sin block is connected to a
summingJunction block, which computes the difference between sin(t) and a
variabTe called desired cross point. This difference is connected to the
crossDetect block, which has an internal crosspoint of O.

In effect, anon-zero crossover detection problem is converted to a0 crossover
detection problem. That is, the problem of y =1 when sin(t) = 0.5is converted to

y=1whensin(t) - 0.5=0. Therest of the diagram isidentical to the previous one.

177



Chapter 12 Block Reference

date

DDE

DDEreceive

DDEsend

178

[ Fri Sep 29 15:22:358 1905 |

Block Category: Annotation

The date block displays the current date and time. The date and time are updated
when you move ablock, print the diagram, or repaint the screen. If you need to reset
the time or date, use the system Control Panel. For more information, see the

Microsoft Windows User’s Guide.

[>{ DDE
Block Category: DDE
The bDE block exchanges information with another Windows application. Use this
block when you want to create a link that sends information to and receives

information from another application. Y ou can create links between VisSim and
other applications that support DDE.

For more information on the DDE block, see page 119.

| DDEreceive [

Block Category: DDE

The DDEreceive block creates a DDE link that passes information from a Windows
application (referred to as the source or server) into ablock diagram (referred to as
the destination or client).

For more information on the DDEreceive block, see page 115.

[ VisSim|Diagram1 |

Block Category: DDE

The bDEsend block creates a DDE link that passes information from a block
diagram (referred to as the source or server) to another Windows application
(referred to as the destination or client).

For more information on the DDEsend block, see page 117.



Chapter 12 Block Reference

deadband

derivative

Pl e

0 if|x|£ deadband
2
y =

deadband .
— otherwise

X — (si gn(x)
Block Category: Nonlinear

The deadband block produces an output signal, which is the input signa reduced by
azone of lost motion about the signal’s 0 value. Use this block to simulate play in
mechanical systems, such as gears or chains.

deadband Block Properties
Dead Band IU ]

a3 I Cancel | Help |

Dead Band: Indicates the width of the zone of lost motion about the input signal’s
O value. Thedefault is0.2.

signal

Estep-size (=0) derivative d/it (signal) I>

Block Category: Toolbar

Thederivative block appears on the toolbar (9|) when you ingtall VisSim 3.0b+.
It calculates the change in function value with respect to time.

179



Chapter 12 Block Reference

display

180

Thederivative block has two inputs: step size and signal. The step sizeindicates
the sampling rate of the derivative. It must be greater than zero. When the step sizeis
large with respect to the function, the signal can become unstable. When you
integrate the output of the derivative block, you will see degradation in the

signal.

display = x;
Block Category: Signal Consumer

The dispTay block displays the current value of the input signal in any number of
significant digits. Y ou can select a color for the displayed value, aswell asa
background color for the block.

The dispTlay block automatically expands to display vector and matrix elementsin
individual cells.

display Block Properties

Walue: IE gk I
Display Digits: IE LCancel |
Help |

¥ &llow Foom for Exponential Hotation

Colar

Background |

[~ Overide Default Colors

Value: Controlsthe current valuein the display. The default is 1.

Display Digits: Indicates the number of displayed significant digits. The value you
enter overrides the setting of the High Precision Display parameter under
Preferences in the dialog box for the Edit > Preferences command. The default is 6.

Allow Room For Exponential Notation: Expandsthe display block sothereis
room for exponentia notation. If you wish to have avery small display block,
perhaps for use in display mode, you should turn off this option.

Color: Applies background and foreground color to the display block. Click on
the Foreground and Background buttons to select a color. The selected colors are
displayed to the right of the buttons. To override the background color selected using
the View > Colors command, activate Override Default Color.



Chapter 12 Block Reference

dotProduct

embed

error

[111]>

N

y =, Xl X X2¢
K=1

Block Category: Matrix Operations

The dotProduct block produces a single value summation of an element-by-
element multiply. The dotProduct block accepts two vector inputs and produces a
scalar output. If the input vectors have an uneven number of elements, an error
occurs.

Multiplying scalars and matrices

To multiply two or more scalars, use the * block, as described on page 142.

To multiply two matrices, usethe multiply block, as described on page
220.

The embed block lets you embed a multi-level block diagram in the current block
diagram. For more information, see page 127.

[ error

error condition = xq

Block Category: Signal Consumer

The error block flags an error in asimulation. When the input signal becomes non-
zero, the error block and all compound blocks which contain it are highlighted in
red and the simulation is stopped.

Y ou can reset the error condition by clicking the right mouse button on the error
block.

181



Chapter 12 Block Reference

exp

export

expression

182

[ exp [>

y=¢'
Block Category: Transcendental

The exp block performs the inverse operation of the 1n block and raises the input as
apower of e. Theirrational number eisthe base of natural logarithmsand is
approximately equal to 2.7182828.

Examples
1. Computation of thevalue of e
The value of e can be obtained by providing an input value of 1 to an exp block as:

EXp 271828182846 |
g =gl

Diagram1 .dat

data file column,, = X,

Block Category: Signal Consumer

The export block writessignalsto afilein .DAT, .M, .MAT, or WAV file format.
The file can subsequently be used asinput to VisSim or to avariety of other
programs, such as MatL ab and Microsoft Excel. For more information, see page
111.

D expression

The expression block allows you to enter a C expression that VisSim parses and
acts upon. With expressions, you can significantly reduce the number of blocksin
your diagrams. For example, consider the simple equation:

X+sin(y) =z



Chapter 12 Block Reference

Without the expression block, the block diagram representation of this equation
is:

1.5708 [y |—»{ sin |

Instead of using the variabTle, sin, and summingJunction blocks, you can create
asingle C expression that performs the same function:

!WI%:: $1 +sin($2) |

The elements $1 and $2 are VisSim-specific notation that reference the inputs.

+
+y D 2]

What you can do with expression blocks:
e  Speed up simulation time

The more blocks in adiagram, the longer it takes to simulate to the diagram.
Conseguently, as you replace series of blocks with expression blocks, the
simulation time decreases.

¢  Reduce development time

Instead of inserting groups of blocks and wiring them together, you can insert a
single expression block that performs the same function.

e Simplify troubleshooting

Y ou can request that VisSim check the logic of the expression before you simulate
the diagram. Y ou simply press akey and VisSim does the rest.

Writing an expression: The Expression Properties dialog box lets you set up your
expression.

Expression Properties
i Expression Text

— Parge Eror

oK I Parze LCancel

183



Chapter 12 Block Reference

fft

184

Expression Text: Indicates a C expression. A C expression consists of one or more
operands and zeros or more operators linked together to compute avalue. Y ou enter
expressions according to the syntax rules for the C language. If you' re unfamiliar
with the language, refer to C: A Software Engineering Approach, (Springer-Verlag,
1990).

The following VisSim-specific rules apply to entering C expressions:

e Inputsarereferenced using the notation $n, where n represents an connector
number. For example, $1 isinput 1 (the top input connector), $2 isinput 2 (the
second from the top input connector), and so on.

e  Only one output valueis allowed.

ParseErrors: Liststhe errorsthat occur when VisSim parses the C expression.
Thisisaread-only box.

Examples

1. Computation of cos’(8) + sin?(6) = 1

If 6 is chosen to be nt/3, the above expression can be realized as:

1.04762
pif3

The same equation can be realized using an expression block as:

[1.04762 || theta | cos(E1)*cos(E1) + sin(E D¥sin(E1) | 1]
pif3 cos™2(theta) + sin™2(theta)

Here, the expression cos?(0) + sin(0) is entered directly into the expression block
as cos($1) * cos($1) + sin($1) * sin($1), where $1 corresponds to the only input on
the expression block. When the simulation runs, VisSim substitutes $1 in the
expression with the top input connected to it and then eval uates the expression.

From the results obtained, both methods yield the correct answer.

D ft

Block Category: Matrix Operation

The fft block converts data from time domain to frequency domain.



Chapter 12 Block Reference

The fft block computes an n-sample FFT at every simulation time step, wherenis
the length of the input vector.

If theinput to the fft block isnot an integral power of 2, automatic zero padding is
performed to make the input vector size an integral power of 2. Thisis a standard
procedure in FFT computation. The output of the fft block is Fourier coefficients.
Individual coefficients can be accessed using a vecToScalar block.

Examples

1. Computation of FFT and inverse FFT

Consider asimple example, where asinusoidal signal is converted to frequency
domain via FFT, and then reconstructed using inverse FFT.

-buffer‘ it Founer Coefficients vs. Time !El-
200
buffer length: 128 V >S5
dT: 0.01

Tlme (s e c)

FFT coefficients (Top 4)

ittt o S
1 1
e v
situsoid
1 ! 1 1 1 1 1 1 1 1
0 2 4 5 3 10 0 2 4 5 8 10
Time (sec) Time (zec)

A sinusoid block generates a sinusoid signal with afrequency of 1 rad/sec. The
signal is passed through a buffer block of length 128 samples and adT of 0.01.

The output of the buffer block is connected to an £t block, which computes a
128-sample FFT of the original sinusoid at a sampling rate of 0.01.

The output of the fft block is Fourier coefficients. The individual coefficients are
accessed using avecToScalar block. Thefirst four coefficients are plotted to show
their variation with time.

Signal reconstruction is performed by feeding the output of the fft block to an
ifft block to compute the inverse FFT. The output of the i fft block is a vector of
length 128 samples. The contents of this vector are just 128 sinusoid reconstructions,
with each sinusoid trailing the preceding sinusoid by an amount equal to the
sampling rate.

185



Chapter 12 Block Reference

186

Thefirst element in the i fft output vector does not have any delay because zero
time has elapsed between the FFT and inverse FFT phases. In most real-world
situations, however, thereisasmall, non-zero delay between the input signal and its
reconstruction that is introduced by the processor performing the numerical
computations of FFT and inverse FFT agorithms.

LoD

y=X-gan
Block Category: Arithmetic

The gain block multiplies the input signal, by the gain amount. The input can be a
scalar, vector, or matrix.

gain Block Properties
Gain

oK I LCancel | Help |

Gain: Indicates the constant multiplier of the input signal. The default is 1.

Examples
1. Gain of ascalar

Consider the equation y(t) = 3 sin(t), which can be realized as:

43 sin[t) i [u] [E3
3
gain vty = 3 sin{) 0

Time (sec)




Chapter 12 Block Reference

A ramp block is used to access simulation timet, a sin block generates sin(t), a
gain block amplifies sin(t) to 3 sin(t). Both sin(t) and y(t) are shown in plot blocks
for comparison.

2. Gain of avector
Consider the equation:
z=7x

wherex =[-1 5.6 4]. Thisequation can berealized as:

[-1] S5V -7
) (7> 392
3 28

The gain block performs an element-by-element gain operation on the incoming
vector.

3.  Gain of amatrix

Consider the equation:

Z=42X
2 -56 4
where X =|-1.2 21 -36
1 -87 64

This equation can be realized as:

84 2352 163
(4.2 5.04 8.82 1812
42 3654 26.88

The gain block performs an element-by-element gain operation on the incoming
matrix.

187



Chapter 12 Block Reference

gaussian

globalConstraint

histogram

188

b

Block Category: Random Generator

The gaussian block creates a normally distributed, random noise signal. You
specify arandom seed value under the Preferences tab in the dialog box for the
Simulate > Simulation Properties command.

gaussian Block Properties
Mean ([
Standard Deviation |1

oK I LCancel | Help |

Mean: Indicatesthe center of the distribution. The default value is 0.

Standard Deviation: Indicates the distance from the mean, which covers one
standard deviation. The default valueis 1.

[>{ globalConstraint |

Block Category: Optimization

The gTobalconstraint block provides side constraint information when writing
your own global optimizer. For more information, see Chapter 8, “ Performing
Global Optimization.”

E Histogram il

Block Category: Signal Consumer

The histogram block shows how data are distributed over the course of a
simulation. For more information, see page 73.



Chapter 12 Block Reference

ifft

D ifft

The i fft block converts data from frequency domain to time domain. The i fft
block computes an n-sampleinverse FFT at every simulation time step, whereniis
the length of the input vector.

Block Category: Matrix Operation

If theinput to the i fft block is not an integral power of 2, automatic zero padding
is performed to make the input vector size an integral power of 2. Thisis a standard
procedure in inverse FFT computation. The output of the i fft block is Fourier
coefficients. Individual coefficients can be accessed using a vecToScalar block.
Examples

1. Computation of FFT and inverse FFT

Consider asimple example, where asinusoida signal is converted to frequency
domain via FFT, and then reconstructed using inverse FFT.

-buffer‘ it Founer Coefficients vs. Time !El-
200
buffer length: 128 V >S5
dT: 0.01

Tlme (s e c)

FFT coefficients (Top 4)

i S
+ Original Signal =] B3 :Signal Reconstructed by IFFT =] E
1 1
o 0

simuzoid

1 I I 1 1 1 1 I 1 1
0 2 4 & 3 10 0 2 4 |53 g 10

Time (sec) Time (zec)

A sinusoid block generates a sinusoid signal with afrequency of 1 rad/sec. The
signal is passed through a buffer block of length 128 samples and a sampling rate
of 0.01. The output of the buffer block is connected to an fft block, which
computes a 128-sample FFT of the origina sinusoid at a sampling rate of 0.01.

The output of the fft block is Fourier coefficients. The individual coefficients are
accessed using avecToScalar block. Thefirst four coefficients are plotted to show
their variation with time.

189



Chapter 12 Block Reference

import

index

190

Signal reconstruction is performed by feeding the output of the fft block to an
ifft block to compute the inverse FFT. The output of the i fft block is a vector of
length 128 samples. The contents of this vector are just 128 sinusoid reconstructions,
with each sinusoid trailing the preceding sinusoid by an amount equal to the
sampling rate.

Thefirst element in the i fft output vector does not have any delay because zero
time has elapsed between the FFT and inverse FFT phases. In most real-world
situations, however, there is a small, non-zero delay between the input signal and its
reconstruction that is introduced by the processor performing the numerical
computations of FFT and inverse FFT algorithms.

Diagram1.dat [ >

y, = data file column,

Block Category: Signal Producer

The import block imports data points from a .DAT, .M, .MAT, or WAV fileand
translates them into output signals. The data can be either fixed interval or

asynchronous. For more information, see page 109.
] o >
index

Block Category: Annotation

Likethe case block, the index block provides an unlimited number of execution
paths based on the value of a single input. With the index block, however, al the
execution paths are contained in avector or matrix. The top input to the index block
points to the matrix or vector element to be output. The bottom input to the index
block isthe matrix or vector from which the output is selected.



Chapter 12 Block Reference

For example, a6 x 1 vector fed into the index block yields six possible execution
paths:

||| w|ra]—

The index block outputs 1, 2, 3, 4, 5, or 6 depending on whether the index valueis
1,2, 3,4,5, or 6, respectively. In this example, theindex valueis 3, causing a 3 to
be output.

It isimportant to know how an index value references matrix elements. Index values
map to matrix elements in sequential order, starting with the element in columnl-
rowl, through columnl-rowN; then column2-rowl through column2-rowN; and so
on. For example, in the following 2 x 3 matrix, an index value of 3 yields 5:

INDEX VALUE 1: 1 INDEX VALUE 4: 2
INDEX VALUE 2: 3 INDEX VALUE 5: 4
INDEX VALUE 3: 5 INDEX VALUE 6: 6

Ina3 x 2 matrix, an index value of 3 yields 2:

Index value: The following rules apply to the index value:

e Index valuesthat are non-integers are truncated. For example, 0.999 is truncated
to 0.

e |f theindex value targets an unconnected matrix or vector element, the index
block outputs a 0.

o If theindex value targets an out-of-range matrix or vector element, the index
block outputs spurious results. For example, if theindex valueis 5 for afour-
element matrix, the output, might look something like this: 1.06983e-306.

191



Chapter 12 Block Reference

[ int [>

int
y = integer part X
Block Category: Nonlinear
The int block accepts a scalar input and outputs only the integer portion of the
input. The int block does not perform numerical round-off operations. Thus, an
input of 2.9999 yields 2. Inputs can be scalar constants or scalar variables.
Examples
1. Integer portionsof scalar inputs
Consider three scalar inputs 1.7, 2.9999, and 3.0001. These inputs are applied to the
int blocks, as shown below:
int
The int blocks isolate and output the integer portion of the scalar inputs.
> 18 >
integrator (1/S)

192

tend
y= det

tsan
Block Category: Integration

Theintegrator block performs numerical integration on the input signal using the
integration algorithm (Euler, trapezoidal, Runge Kutta 2d and 4th orders, adaptive
Runge Kutta 5th order, adaptive Bulirsh-Stoer, and backward Euler (Stiff))
established with the Simulate > Simulation Properties command.



Chapter 12 Block Reference

The integrator block is one of the most fundamental and powerful blocksin
VisSim. This block, together with the 1imitedIntegrator and
resetIntegrator blocks, offer the power to solve an unlimited number of
simultaneous linear and nonlinear ordinary differential equations.

Initial Condition lE—
ojo
Checkpaint State IU—

oK I Lancel | Help |

Initial Condition: Indicatestheinitial value of the integrator. The default value
isO.

ID: Represents an identification number for the block. It keeps track of the state
number that VisSim assigns to the integrator. The number of statesin any block
diagram equals the number of integrators. The default value is 0.

Checkpoint State: Contains the value of the integrator state at the checkpoint. If
you have not checkpointed your simulation using the Simulate > Simulation
Properties command, the valueisO.

Examples

1. Solvingafirst order ODE

Consider the simplefirst order linear differential equation:

y+y=r(t)

wherer(t) isan externa input. In this case, assume that the external input to the
system isastep function. In VisSim, such equations are best solved by numerical
integration.

Thefirst step isto isolate the highest derivative term on one side. To understand the
procedure better, it is easier to think of isolating the highest derivative term on the
right-hand side as:

r)-y=y

This equation can be constructed as:

|solate the highest derivative on
the right hand side: uft) - v = ydot

+
Ly ]

193



Chapter 12 Block Reference

Here, three variable blocks are used for r(t), y, and ydot.

The second step is to integrate the highest derivative term a sufficient number of
times to obtain the solution. Since the highest derivativeis of first order, ydot must
be integrated once to obtain y. This can berealized as:

Integrate the highest derivative term
as necessary. vy = integral (ydot)

(v ]

The overall simulation is shown below.

|solate the highest derivative an Integrate the highest derivative term
the right hand side: u(t) - v = vdot as necessary. vy = integral (ydot)

0 2 4 g g 10

Theresult shown in the plot block indicates the solution of the differential equation
subjected to a step external forcing function.

194



Chapter 12 Block Reference

2. Setting theintegrator initial condition internally

Consider the same problem above with the assumption that y(0) = 3. In thiscase, in
addition to the external input r(t), the system response a so depends on y(0). This
initial condition can be set directly inthe integrator block. The result for this case
is.

Isolate the highest derivative on Integrate the highest derivative term
the right hand side: u(t) - v = ydot as necessary. v = integral {ydot)

0 1 1 1 I

0 2 4 G g 10
Time (sec)

The pTot block shows that the response y(t) begins at y(0) = 3 and settles down to
1fort> 4.5, as expected.

It isimportant to note that the initial condition on any state (or variable) must be set
onthe integrator block that is generating that state. (This concept becomes
clearer in Example 4.)

3. Setting theintegrator initial condition externally
Consider once again the following ordinary differential equation:
y+y=r(t)

Let r(t) be a step function and assume that y(0) = -3.2. The initial condition can be
set externally, as shown on the next page.

195



Chapter 12 Block Reference

Internal initial condition Define the variable as the sum
must be zero of the integrator output and the

+ desired initial condition
O3 s sy -
+
(] Setting initial

condition externally

P SOLUTION To: YDOT + v = u(r) [H[E
2
1
u]
-1 F
4
-2
-3
4 L L L L
] 2 4 b g 10
Tirme (sec)

In this configuration, make sure that the internal initial condition of the integrator
is set to zero. By default, al integrators have zero initial condition.

The results indicate that the solution of the ordinary differential equation, subject to
the external input and the initial conditions, is computed correctly.

4. Second order nonlinear ODE with external initial conditions
Consider a second order nonlinear system given by:
y+yy+2y=r(t)

Furthermore, assume that r(t) is a unit step function and that the initial conditions are
given by:

y(0) =10 and y(0) =12

Thefirst step isto isolate the highest derivative term on the right-hand side as
r(t) —yy—2y=y. This segment can be coded in VisSim as shown below:

r(t) - yydot - 2 v = ydotoat

The second step isto integrate ydotdot twice: once to generate ydot, and once more
to generate y. As can beimagined, it is crucial to maintain consistent variable names

196



Chapter 12 Block Reference

throughout. Furthermore, the initial conditions must be added using the same
procedure described in Example 3. This segment can be realized as:

wat(0) = 1.2
is set here

yi0)=1
is set here

The complete solution for this problem is given by:

ydot(0) = 1.2
is set here

y(0) =1
iz zet here

rit) - yydot - 2y = ydotdot | YDOTDOT + Y YDOT + 2 ¥ = L(T) 15 [=] 3 I
20
—(t
15 yit)
1.0
{—
]
D Il 1 1 Il
0 8 10 15 20 25
Time (gec)

The solution of the equation, y(t) is shown in the pTot block.

This exampleillustrates the real power of numerical integration using VisSim. If you

want to use the results of a computational segment in agiven VisSim diagram as

initial conditions for one or more integrators, replace the const blocks with
appropriate variable blocks when setting the external initial conditions.

197



Chapter 12 Block Reference

invert
[ ],1 _ adj(A)
det(A)
Block Category: Matrix Operation
The invert block inverts a square matrix using singular value decomposition. The
invert block accepts one vector input and produces one vector output.
1 W5y
012 1 0
<y > 0 1
1 w22
7' —» 1 :
label label

Block Category: Annotation

The Tabe1 block lets you insert floating labels in a block diagram. Y ou can choose
the text attributes for the label, as well as a colored background.

The Tabe1 block is particularly useful for tagging signals.

Label Properties

~Label

label] Bl

Cancel

Help

(i

ﬂ Aftributes

Type Ctrl+ENTER to enter a new line
Background Color...
—Sample
Font...

label
I Owverride default colors
™ Override default font

198



Chapter 12 Block Reference

light

Label: Specifiesalabel. To continue alabel to anew line, hold down the CTRL key
while you simultaneously press the ENTER key.

Attributes. Assignsabackground color and text attributes to the label. Click on the
Background Color button to select a background color for the label. Click on the
Fonts button to select afont, font style, point size, color, and specia effects for the
text. A sample of the text is displayed in the Sample box.

To override the selections in the View > Colors and View > Fonts dialog boxes,
activate Override Default Colors and Override Default Font, respectively.
e

red ifx;>ub
y=qgreen iflb<x, <ub

blue ifx, <Ib

Block category: Signal Consumer

The Tight block is atri-state alarm that glows a color, displays a bitmap image, or
plays sound when supplied with asignal. By default, the 1ight block glows red
when the signal is greater than the upper bound; blue when the signal isless than the
lower bound; and green when the signal isless than or equal to the upper bound and
greater than or equal to the lower bound.

Associating an action with a state: To associate an action — for example, the
display of abitmap image file— with agiven state, select the state from the Settings
box; then click on the Bitmap button and choose the .BMP file to be associated with
the state.

Setting up a light block: The 1ight block’s Properties dialog box lets you control
itsaudio and visua aarms.

Light Properties E
~ Propetties——————————————— II
Walue: [ Cancel
Lower Bound: |0 Help
Upper Bound: |05 ™ Beepif Yalus Exceeds

Upper Bound

 Settings Aasociation:

&+ Lower ﬂ“
e ||| acdh ||
" Upper Calor... _ Play 5 ound |

199



Chapter 12 Block Reference

200

Properties: Establishes the lower and upper bounds for the signal, as well asthe
initial setting of the signal.

Value: Indicatestheinitial setting for the signal. The default isO.

Lower Bound: Indicates the lower bound for the signal. When the signal isless
than the specified lower bound, the 14 ght block performs the action (emitsa
color, sound, or image) associated with the Lower setting. The default is 0.

Upper Bound: Indicates the upper bound for the signal. When the signal is
greater than the specified upper bound, the 1ight block performs the action
(emits a color, sound, or image) associated with the Upper setting. The default
is0.5.

Settings: Indicates the setting to which color, sound, or an image is to be applied.

Lower: Thesignal islessthan the specified lower bound.

Safe: The signal isless than or equal to the specified upper bound and greater
than or equal to the specified lower bound.

Upper: Thesignal is greater than the specified upper bound.

Associations: Indicates whether an image, sound, or color isto be applied to the
specified setting.

Image: Opensthe File Select dialog box in which to choose a.BMPfileto
associate with the selected setting.

Sound: Opensthe File Select dialog box in which to choose a . WAV fileto
associate with the selected setting.

Color: Opensthe Color dialog box in which to choose a color to associate with
the selected setting.

Play Sound: Playsthe sound for the selected setting.

Beep If Value Exceeds Upper Bound: Forcesthe 11 ght block to beep when the
signal exceeds the specified upper bound.



Chapter 12 Block Reference

limit

R

X iflb<x <ub
y=1<lb if  <Ib
ub if x; >ub

Block Category: Nonlinear

The Timit block limits the output signal to a specified upper and lower bound. The
Timit block accepts ascalar input. If theinput is less than the lower bound, the
Timit block limits the output to the lower bound. Similarly, if theinput is greater
than the upper bound, the Timit block limits the output to the upper bound. If the
input falls within the specified bounds, the input is transferred to the output
unchanged.

The Timit block is particularly useful for simulating variables or processes that
reach saturation.

limit Block Properties
Lower Bound
Upper Bound |1EIEI—

oK I LCancel | Help |

Lower Bound: Indicates the lowest value that the output signal can attain. The
default is-100.

Upper Bound: Indicates the highest value that the output signal can attain. The
default is 100.

Examples

1. Simulation of saturation

Consider avariable y such that:

y =sin(t)

Furthermore, assume that y reaches saturation at +0.7 and -0.7. This equation can be
realized as shown on the next page.

201



Chapter 12 Block Reference

LsINGT) O x|
1.0
5
sin s 0
sin(t ) .5
1.0 1 I 1 1
8] 2 4 ) 3 10
Titme (sec)

o]
lower bound: -0.7 -5
upper bound: +0.7
1.0 1 I 1 1
o] 2 4 6 3 10

Titme (sec)

From the results in the two p1ot blocks, the output of the 1imi t block isidentical
to the input, when the input is within the bounds (-0.7 to +0.7). When the input is out
of these bounds, the output is limited to the upper or lower bound values.

178 [>

limitedintegrator (1/S)

(¢

end tend
J-xldt if X = J.xldt = X3
tsan ts{an
tend
y=9% if ledt>x2
ts{an
tend
X3 if fxldt < X3
tsan

Block Category: Integration

The TimitedIntegrator block integrates the input value and limits the internal
state to specified upper and lower limits. If the integral state reachesitslimit, it

202



Chapter 12 Block Reference

backs off the limit as soon as the derivative changes sign. Y ou set the integration
algorithm with the Simulate > Simulation Properties command. Available algorithms
are Euler, trapezoidal, Runge Kutta 2nd and 4th orders, adaptive Runge K utta 5th
order, adaptive Bulirsh-Stoer, and backward Euler (Stiff).

The inputs to the block are x,, the derivative; x, (U), the upper limit; and x; (L), the
lower limit.

The TimitedIntegrator block isused in the prevention of wind-up in Pl and PID
controllersin control applications. It is also used in kinematics, electrical circuits,
process control, and fluid dynamics.

Initel Condition[k
ojo
Checkpaint State lU—

oK I Lancel | Help |

Initial Condition: Indicatestheinitia value of the integrator. The default is 0.

ID: Represents an identification number for the block, which holds the state number
that VisSim assigns to the integrator. The number of statesin any block diagram
equals the number of integrators. The default isO.

Checkpoint State: Contains the value of the integrator state at the checkpoint. If
you have not checkpointed your simulation using the Simulate > Simulation
Properties command, the valueis 0.

Examples

1. Integration with constant limits

Consider a system whose dynamics are given by the differential equation:

X =sin(t)

Furthermore, assume that x must lie in the limits 5 < x < 6 and that x(0) = 5. This
system can be realized as shown on the next page.

203



Chapter 12 Block Reference

sin st ——m
5] Ul 1/5 P
5 Ly
| POSITION OF MASS O] «]
7.0
6.5
B.0
50 1 1 1 1 1
0 5 10 15 20 25 30
Time (sec)

During simulation, the 1imitedIntegrator block limitsthe output to be within
the upper and lower limits, namely 6 and 5, respectively.

2. Integration with time-varying limits
Consider a system whose dynamics are given by the differential equation:
X = sin(t)

Furthermore, assume that x must lie in the limits 0.2t < x < 2t and that x(0) = 0. This
system can be realized as:

Tirne (sec)
| TIME VARYING LIMITS I ] S
BD 4—{ upper fimit |4
40
20
o . ; : I 1 [ower lirmit 4
0 5 10 15 20 25 30 .
Time (sec)

A ramp block is used to access simulation time, t; simulation time is then used to
feed the sin block, and two gain blocks, set to 2 and 0.2, to generate the time-

204



Chapter 12 Block Reference

lineDraw

log10

varying upper and lower limits. During simulation, the time-varying limits and the
output of the TimitedIntegrator block are displayed in the pTlot blocks.

lineDraw

Block Category: Animation

The Tinebraw block lets you animate a line during smulation. Y ou define the line
by specifying two sets of x,y coordinate endpoints. Y ou can also set the color,
thickness, and style of the line. For more information, see page 81.

[ log10 [>

y = logyox

Block Category: Transcendental

The Tog10 block generates the log base 10 of the input signal. The logarithm of O to
any base is undefined. The logarithm of any number, when the base is the same
number, is 1.

Examples

1. Computation of log;oy =10gey / loge 10

With y chosen to be 100, and e as the base of the natural logarithm, this equation can
beredized as.

[v] ogi0 ——» 2]

logly) to base 10

] o —
e ] 2

(loafy) to base e) / {log(10] to base e)

From the results obtained, log,o y = log. y / log. 10 where eis the base of the natural
logarithm. It can further be proved that log. y = log, y/ log, a, where a, b, and y are
any positive hon-zero numbers.

205



Chapter 12 Block Reference

map

206

y = 109X
Block Category: Transcendental
The Tn block generates the natural (Naperian) log of the input signal.

Examples
1. IfIny)=x,thene=y

With y chosen to be 10, and e as the base of the natural logarithm, this equation can
be realized as:

(v 2.30259

%= Infy)

el =y

The exp block raisesitsinput as a power of e, the base of natural logarithm. The
quantity eisan irrational number, which is approximately equal to 2.718281828.
From the results obtained, if In(y) = x, then =y, where e is the base of the natural

logarithm.

[+ Diagram1.map [>

Vi(Ys...y,) = tablelookupx (1- D)
y = table lookup(x;, X,) (2-D)
y = table lookup(X;,X,,%3)  (3—D)

Block Category: Nonlinear

Themap block performs piecewise linear interpolated 1- 2-, and 3-dimensional table
look-ups. This means that you can encapsulate nonlinear behaviors through direct
measurements. Y ou can, for example, use laboratory data or a manufacturer’s
component performance data directly in asimulation.

Themap block searches the input vector, starting at the last look-up input value to
avoid table search overhead.



Chapter 12 Block Reference

Themap block uses a multi-column ASCII datafile to map input signalsto adesired
output domain. Numbers can be separated by commas, spaces, tabs, vertical bars,
colons, semicolons or slashes. One-dimensional maps have one independent
variable, but can have from one to 16 dependent variable outputs. Two-dimensional
maps have two independent variables and one dependent variable output. Three-
dimensional maps have three independent variables and one dependent variable
output.

Dependent variables are linearly interpolated for independent variable values
between map points, and linearly extrapolated for values beyond the bounds of the
table using the last two pointsin the table. This feature can be used for static
function approximation with measured data or for device calibration, such as
thermocoupl e-voltage-to-temperature conversion.

Usethe export block to create map filesin VisSim.

Map Properties

’—Map File Name

Select File... | Type: Idouhle 'I
Browse Data... | ¥ Interpolate ¥ Extrapolate

Map Di
& 1-D Mapping 2x80

1 2-0 Mapping 54x80
[1:99]
) 30 Mapping 54x80
[1:20]
[2:99]

OK I Cancel | Help |

Map File Name: Indicates the name of the map file. Y ou can typein afile name
directly into this box or select one using the Select File button.

To open the specified file with the default text editor, click on the Browse Data
button.

Map Dimensions: Controls the dimensionality of the map file.

e 1-D Mapping: Indicates 1-D mapping capability. VisSim includes the number
of columns and rows in the selected map file, and the first and last numbersin
the first column of the selected map file to the right of this parameter.

In 1-D mapping, the first column is an independent variable range. The numbers
in the independent variable column must be either in increasing order or
decreasing order, but not both. Each additional data column you supply in the
map file yields an additional dependent variable. Use the Edit > Add Connector

207



Chapter 12 Block Reference

208

command to add an output connector tab for each dependent variable columnin
themap block. The topmost output connector tab corresponds to the leftmost
dependent variable column in the table, the second from the top corresponds to
the second from the left, and so on.

A 1-D matrix is limited to 8000 rows.

The numbers to the right of the 1-D Mapping parameter refer to the
dimensionality and range of the map vector. For example, 10x1[1:100]
represents a 1-D table with 10 elements ranging from 1 to 100.

Lines that begin with aprefix of “;” are treated as comments.

2-D Mapping: Provides simultaneous mapping for two independent variables.
The format of a2-D map fileisasfollows: the first row contains the domain
points for the first independent variable (the topmost connector tab on the map
block), the first column (excluding the column member in row 1) represents the
second independent variable, and the (1,1) position must be left blank. Like 1-D
mapping, the independent variable values must be either monotonically
increasing or decreasing.

A 2-D matrix is limited to 90 rows by 90 columns (or, a maximum of 89 * 89
data points).

Lines that begin with aprefix of “;” are treated as comments.

An example of a2-D map file is shown below.

10 11 20 25

-5 -5 -2 1 20
2 2 5 7 10
3 3 7 8 5
4 4 9 10 2
5 5 11 15 -5

In the above matrix, the first row represents the domain points of the first
independent variable, and the first column represents the domain points of the
second independent variable. The entries represent the dependent variable
values at the corresponding values of independent variables 1 and 2. For
example, for x; = 10, x, = 2, the output is 2; for x; = 10.5, x, = 2.5, the output
is4.25.

The numbersto the right of the 2-D Mapping parameter refer to the

dimensionality and range of the map vector. For example, 10x50[10:20, -10:10]
represents a 2-D table with 10 columns and 50 rows, where the minimum



Chapter 12 Block Reference

column is 10, the maximum column is 20, the minimum row is-10, and the
maximum row is 10.

e 3-D Mapping: Provides simultaneous mapping of three independent variables.
The format of thefirst seven linesis as follows:

Line Format

Linel Starts with #3D

Line2 Indicates the size of dimension 1

Line3 Indicates the interpol ation points of dimension 1
Line4 Indicates the size of dimension 2

Line5 Indicates the interpol ation points of dimension 2
Line6 Indicates the size of dimension 3

Line7 Indicates the interpolation of dimension 3

Lines 8 through Line n are elements of dimension 3 matrices of (dimension 1
columns x dimension 2 rows). Lines that begin with a prefix of “--",“;”, or “/I"
are treated as comments.

Type: Indicates the type of dataread in from the map file.

Interpolate: Allows dependent variables to be linearly interpolated for independent
variable values between data points. This feature can be used for static function
approximation with measured data or for device calibration, such as thermocouple-
voltage-to-temperature conversion.

Extrapolate: Allows dependent variablesto be linearly extrapolated for values
beyond the bounds of the table using the last two data pointsin the table. This
feature can be used for static function approximation with measured data or for
device calibration, such as thermocouple-voltage-to-temperature conversion.

Examples
1. 1-D look-up table

Consider a hypothetical electrical motor that accepts DC input voltage in the range
of 0to 40 V. Furthermore, assume that the current drawn by the motor is equivalent
to that of an ideal 3Q resistor. The motor manufacturer has specified the following
current-torque curve for the motor:

Current (A) Torgue (N-M)
0. 0.
3 0.
.68 10.

209



Chapter 12 Block Reference

Current (A) Torque (N-M)

1.15 11.8

2.16 12.77
2.86 13.04
3.7 12.86
4.36 12.66
5.74 11.84
6.73 11.18
10.5 8.62

115 8.62

Assuming that the voltage is applied at therate of 1.2 t, wheretistimein sec. This
system can be realized as shown below:

o 40
Upper lirnit: 40
Lower limnit: © 20
—
Voltage Generator o L ! | I I
o] 5 10 15 20 25 30
Titne (sec)

20

10
T

Computation of Current o L ! ! L L
0 5 10 15 20 25 30
Time (sec)
20
10
Current - Torque o | | . . !
Look-up Table 5 10 15 20 25 30
(1-D Map Block) Time (sec)

To generate the voltage, wire a ramp block, used to generate smulation timet, to a
gain block set to 1.2. The output of the gain block passesthrough a 1imit block
with its lower and upper limits set to 0 and 40, respectively. The output of the Timit
block is the voltage applied to the motor and is monitored in the upper plot.

210



Chapter 12 Block Reference

To compute the current, divide the output of the Timit block is by aconstant value
3. The current is monitored in the middle plot.

A map block pointsto the datafile I2T.MAP, with two columns of data containing
the current-torque curve for the motor. (The sample data used in this exampleis
shown in the table above.)

Themap block monitors the input value and compares it with the data in the first
column. For example, if theinput valueis 3, the map block recognizes that the input
is between the two points 2.86 and 3.7 in the input column. The map block performs
alinear interpolation between the corresponding values in the second column,
namely 13.04 and 12.86. Consequently, for an input of 3, the output of the map
block is:

13.04 +(3-2.86) * ((12.86- 13.04) / (3.7 - 2.86) )
whichis equal to 13.01.
2. 2-D look-up table

Using the same hypothetical motor described above, make the following
assumptions:

e Thetorque developed by the motor is afunction of the current, aswell asthe
operating temperature of the motor.

e  The current-temperature-torque has the following profile:

Torque (Temperature Dependent) (N-M)

Current (A) Torque at Torque at Torqueat Torqueat
30°C 40°C 50°C 60°C

0. 0. 0. 0. 0.
0.3 0. 0. 0. 0.
0.68 10 95 9.10 8.7
1.15 11.8 11.21 10.74 10.27
2.16 12.77 12.13 11.62 11.19
2.86 13.04 12.39 11.87 11.35
3.7 12.86 12.22 11.70 11.18
4.36 12.66 12.03 11.52 11.01
574 11.84 11.25 10.77 10.30
6.73 11.18 10.62 10.17 9.73
10.5 8.62 8.19 7.84 7.50
11.5 8.62 8.19 7.84 7.50

211



Chapter 12 Block Reference

e The motor temperature profileis given by T, = (30 +1)° C, where T, isthe

motor temperature and t is time in seconds.

e A datafile named 2DI2T.MAP is formatted as shown bel ow:

30. 40. 50. 60.

0. 0. 0. 0. 0.
0.3 0. 0. 0. 0.
0.68 10 9.5 9.10 8.7
115 118 1121 10.74 10.27
2.16 12.77 1213 1162 11.19
2.86 13.04 1239 1187 11.35
3.7 12.86 1222 11.70 11.18
4.36 12.66 12.03 1152 11.01
574 11.84 11.25 10.77 10.30
6.73 11.18 10.62 10.17 9.73
10.5 8.62 8.19 7.84 7.50
115 8.62 8.19 7.84 7.50

The values of the temperature are entered in row 1, starting with column 2. The
values of current are entered in column 1, starting with row 2. The values of the
current and the temperature are shown in bold type for clarity.

Using a 2D map block, the system simulation can be redlized as:

: TEMPERATURE (DEGREES ) o =]
60
S0~
= >
@ Trm a0k
20 I I I I I
o] 5 10 15 20 25 30
Time (sec)
i TorQUE DEVELCPED By MoToR =] .3
20
10~
2di2t map
- Temperature - Current. 0 : ; ; ; ;
Upper limit: 40 5 10 15 20 25 30
ngfer limit 0| Forque Look-up Table Time Gsec)
(2-D Map Block)
\ CURRENT =] .3
20
10~
g
- 0 T I I I I
Computation of Current o 5 0 13 20 25 30
Time (sec)

212



Chapter 12 Block Reference

In addition to the blocks used in Example 1, avariable t, defined as simulation
time, is connected to the output of the ramp block. A map block is used to access
2DI2T.MAP. Because this datafile is a 2-D look-up table, the map block accepts two
inputs: temperature (the independent variable in the first row) and current (the
independent variable in the first column).

To generate the temperature profile, a const block of 30isadded to variable t,
fed through another variable Tm, and monitored in the top pTot block.

As before, the outputs of the map block, and the / block are monitored to observe
the profiles of the motor torque and current, respectively.

During simulation, when the temperature is >30° C and <40° C, the second column
of datais used to generate the torque profile. Similarly, for temperatures that are
>40° C and <50° C or >50° C and <60° C, datain the third and fourth columnsis
used respectively.

3. 3-Dlook-up table

The structure and usage of aVisSim diagram that includes a 3-D look-up tableis
very similar to a 2-D look-up table. The major differenceisin the specification of
the data file to be used by the 3-D map block. As an example, consider the following
datafile:

#3D_EX.MAP
--Table_caxial_0 5 10 3
--Mach No. breakpoints
5
1.05 1.10 1.20 1.35 1.50
--Angle_of_Attack breakpoints
10
4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00
--Angle_of_sidesTip breakpoints
3
0.00 2.00 4.00

-- Angle_of_sidesTip = 0.00
0.493 0.533 0.550 0.529 0.496
0.492 0.532 0.549 0.529 0.497
0.491 0.530 0.547 0.529 0.497
0.488 0.528 0.545 0.529 0.497
0.485 0.525 0.541 0.529 0.497
0.481 0.520 0.536 0.529 0.497

213



Chapter 12 Block Reference

0.474 0.513 0.528 0.530 0.498
0.465 0.504 0.517 0.530 0.498
0.452 0.488 0.482 0.530 0.498
0.430 0.439 0.444 0.531 0.499
-- Angle_of_sidesTip = 2.00
0.493 0.533 0.550 0.529 0.496
0.492 0.532 0.549 0.529 0.497
0.490 0.530 0.547 0.529 0.497
0.488 0.528 0.544 0.529 0.497
0.485 0.525 0.541 0.529 0.497
0.480 0.520 0.535 0.529 0.497
0.474 0.513 0.528 0.530 0.498
0.465 0.503 0.516 0.530 0.498
0.451 0.487 0.480 0.530 0.498
0.429 0.437 0.442 0.531 0.499
-- Angle_of_sidesTip = 4.00
0.493 0.532 0.549 0.529 0.496
0.491 0.531 0.548 0.529 0.497
0.490 0.530 0.546 0.529 0.497
0.487 0.527 0.543 0.529 0.497
0.484 0.524 0.540 0.529 0.497
0.479 0.519 0.534 0.529 0.497
0.473 0.512 0.527 0.530 0.498
0.463 0.502 0.514 0.530 0.498
0.449 0.485 0.476 0.530 0.498
0.426 0.433 0.437 0.531 0.499

This data corresponds to one of the aerodynamic coefficients of aprojectilein
motion, traveling at speeds ranging from 1 to 1.5 mach. The value of the coefficient
varies with three parameters. mach number, angle of attack, and angle of sidedlip.
Assuming sinusoidal variationsin al three parameters, a diagram that uses this data
file can be realized as shown on the next page.

214



Chapter 12 Block Reference

max

range: (1to 1.5)

5
+ o (2] mach_number
>

bs

angle of attack 3d exmap : C-Axial (Aerodynamic Coefficient) Eiim]
range: (0 to 22} 550
525
»
500
abs angle_of sideslip
range: (O to4) B 475
450 I 1 I I
8] 2 4 ] g 10
> Time (sec)

Three s1in blocks produce sinusoidal variations of amplitudes 0.5, 22, and 4 for the
three variables mach_number, angle of attack, and angle_of dlideslip. Three
abs blocks ensure that the values attained by the variables are strictly positive. A
constant value of 1 is used to obtain avariation in the range (1, 1.5) for
mach_number.

The outputs of the three variabTle blocks are fed into amap block that pointsto the
map file 3D_EX.MAP, whose contents are shown above. The resulting value of the
C-axial aerodynamic coefficient are shown in the pTot block.

E max [ >

Xp x> X%,
Xy if Xy <X,
Block Category: Nonlinear
Themax block compares scalar inputs for a higher value and generates an output
signal with the higher value.
Examples
1. Comparison of two values
Consider the equation:
Z = max(X,y)

If x isasinusoid that varies between -1 and +1, and y is a uniform random variable
that varies between -1 and +1, this equation can be realized as shown on the next

page.

215



Chapter 12 Block Reference

216

+ :IFiot _ O] x|
2
!
n
> -1
2 1 1 1 1
i 1 2 3 4 5
Ld Titne (zec)
nad " :1Plok M[=F3
2
Instantaneous Mamimum »
0
pes
1 1 1 1 1
i 1 1 3 4 5
Ld Titne (sec)

2. Computation of the maximum value of a given time-varying signal
Consider the equation:
z=max(y)

wherey isauniform random variable that varies between -1 and +1. To find the
maximum value that z attains, create the following diagram:

310251

Instantaneous Value

1.00068 QJ

Overall Mazimum Value

F 3

A unitbelay block storesthe previous value of y. The max block compares the
current and previous values of y. The larger of the current and previous valuesisfed
back into the unitbelay block for the next round of comparisons. Thisway, the
output of the max block is always the largest encountered value of y. The working
details of this procedure are best examined by single-stepping through the
simulation.



Chapter 12 Block Reference

merge

merge | >

{xz if %, >1
y= ,
Xg if|x|<1

Block Category: Nonlinear

Themerge block examines x; (Boolean signal) to determine the output signal. The

letters b, t, and f on the input connector tabs stand for Boolean, True, and False. The
merge block accepts scalar, vector, and matrix input.

Themerge block is particularly well-suited for performing if-then-else decisions.

Examples

1. Simplemerge

Consider the equation:
Ify=2thenz=5esez=25
This equation can be realized as:

by
P
;# merge (=]

else

2. Cascade merge
Consider the equation:
Ifx=1landy=2,thenq=z€elseq=0

where (if y= 2, then z=5, elsez= 2.5). Thislogical relation can be realized as
shown on the next page.

217



Chapter 12 Block Reference

meter

min

218

(]
L
display = x;

Block Category: Signal Consumer

ifz=1

Ly v bz}

fx=1landy=2

h
L
2 tf'# merge

— O
- =
—w
|
|
— o

Y

Meter 1

Themeter block displays signalsin either a gauge- or bar-style display. Initialy, the
meter block appears as a gauge-style display with one input connector tab. For
more information, see page 75.

_{xl if X, <X,
Xy if Xy > X,

Block Category: Nonlinear

Themin block compares two scalar inputs for alower value and generates an output
signal with the lower value.

Eminb




Chapter 12 Block Reference

Examples

1. Comparison of two values
Consider the equation:
Z=min(x,y)

If xisasinusoid that varies between -1 and +1, and y is a uniform random variable
that varies between -1 and +1, this equation be realized as:

T — (5[]

2
1
bl
P -1
22 I I I I
> 0 1 2 3 4 5

Titne (sec)

e
1

Instantaneous Minirmurm

22 I I I I
2 3 4 5

Titne (sec)

2. Computation of the minimum value of a given time-varying signal
Consider the equation:
z=min(y)

wherey isauniform random variable that varies between -1 and +1. To find the
minimum value that z attains, create the following diagram:

1.0006%

Instantaneous Value

[v] min
ﬂ—-‘ Mﬂ b
s

- B5T537 J

Owerall Minimum Value

F Y

219



Chapter 12 Block Reference

multiply

220

A unitbelay block stores the previous value of y. Themin block compares the
current and previous values of y. The smaller of the current and previous valuesis
fed back into the unitbelay block for the next round of comparisons. Thisway, the
output of the min block is always the smallest encountered value of y. The working
details of this procedure are best examined by single-stepping through the
simulation.

[IX[] P>

Block Category: Matrix Operation

Themultiply block performs amatrix multiplication. Themultiply block
accepts two vector inputs and produces one vector output.

Multiplying scalars and vectors

To multiply two or more scalars, use the * block, as described on page 142.

To perform a single value summation of an element-by-element multiply of
two vectors, use the dotProduct block, as described on page 181.

Examples

1. Simplematrix multiply

—SmY
—p1.2
—i71
—P22 | .
N ™ 18 22
— g 43 50
—{1.2
—2.1
—w2 |
Here



Chapter 12 Block Reference

neuralNet

not

Then

AB_|:](5)+2(7) ](6)+2(8)]_{19 22]

3(5)+4(7) 36)+4(8)| |43 50

neuralNet >

The neuralNet block excels at nonlinear system identification, problem diagnosis,
decision-making, prediction, and other problems where pattern recognitionis
important and precise computational answers are not readily available. Typical uses
of the neuralNet block include the identification of a chemical plant and the
training of amoving cart to balance a vertical pole.

To usethe neuralNet block, you must install the VisSim/Neural-Net software on
your computer. For more information on the neuralNet block, see the
VisSm/Neural-Net User’s Guide.

[+ not [

~ |0 otherwise
Block Category: Boolean

The not block produces the Boolean NOT of the input signal. The output is true
when the input is false; and the output is false when the input is true.

If you click the right mouse button over the not block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Using a not block

Consider avariable ¢ such that:

c=b

221



Chapter 12 Block Reference

or

222

or in other words, ¢ = not(b). Furthermore, assumethat bistrueif t > 2.2; elsebis
false, wheret is the simulation time. This system can be realized as shown below.

_ O %
2.0
15
! l 10
> >
[22}—L
5
0 1 L L L
o] 2 4 & 8 10
Time (sec)
2.0
15+
e
S
0 1 L L L
o] 2 4 5] g 10
Time (sec)

From the outputs obtained in the two pTot blocks, b, given by the output of the >
block istrue only whentis > 2.2. This requires that ¢, which is defined to be not(b),
be true only the range t < 2.2, as obtained in the bottom p1ot block.

E or [>

The or block produces the bitwise OR of two to 256 scalar input signals. The output
of the or block istrue when at least one of the inputsistrue. When all the inputs are
false, the output isfalse.

y = X, bitwise OR X,

Block Category: Boolean

If you click the right mouse button over the or block, the Boolean block menu
appears allowing you to assign a different function to the block.

Examples

1. Computation of threeinputs

Consider avariable y such that:

Ifa>8orb=60rc<3, theny=cos(t); elsey=0

wheret is simulation time. Furthermore, let t be the input to all three parameters a, b,
and c. This system can be realized as shown on the next page.



Chapter 12 Block Reference

parahola

_ O] X
1.0
S
I merge | p{7—p O
5k
1.0
Q 2 4 & 8 10
Time (sec)
_ O] X
1.0
S
cos > o
-5
1.0 L
o 2 4 & 8 10
Titne (sec)

During simulation, the or block evaluatesto falsein theinterval t = (3,8), except for
theinstant t = 6. In this case, the variab1e y takes on the value of 0. The output of
or evauates to true in the remaining parts of the simulation, and as aresult, y takes
on the value of cos(t) in these periods, including the instant t = 6.

y=slope - (t—tgya,)’
Block Category: Signal Producer
The parabola block creates a parabolic signal.

parabola Block Properties
Time Delay[zec] Im
Slope Rate I'I

a3 I Cancel | Help |

TimeDelay: Indicates an offset that is used in the calculation of asignal. For a
constant-valued delay, wire the block into aunitbDelay or timeDelay block with
an initial condition of the desired constant value.

Specify the offset in seconds. The default valueis 0.
Slope Rate: Scales the curvature of the parabola. The default valueis 1.

223



Chapter 12 Block Reference

[>{ parameterUnknown [

parameterUnknown

plot

pow

224

Block Category: Optimization

The parameterunknown block works with the cost block to find globally optimal

values that minimize a scalar cost function. For more information, see Chapter 8,
“Performing Global Optimization.”

0 0 3
Time (sec)

vVVYyVveYy

plot = X;... X,

Block Category: Signal Consumer

The pTot block displays simulation data graphically in a customizable plots. For
more information, see page 59.

> pow [>

x Exponent

y=<or
X, 2
Block Category: Arithmetic

The pow block creates an output signal based on the value of the input signal raised
to the power of a specified exponent. Inputs can be scalars, vectors, or matrices.
When the input is a vector or matrix, the pow block computes the output on an
element-by-element basis.



Chapter 12 Block Reference

The pow block is useful for solving equations of the type y = x.. Do not use the pow
block to compute matrix dot products, such as Y = A% where the dot product is
implied. Instead use the dotProduct block, as described on page 181.

By adding an input connector tab to the pow block, you can specify an externa
exponent parameter to override the block’ s exponent parameter. For example:

Hy

) g e—
[

This diagram raises two to the eighth power. The display block verifies the results.
The main advantage of setting the exponent externally is that the value of the
exponent can be varied dynamically as the simulation progresses.

pow Block Properties
Exponertt B

,TI Cancel | Help |

Exponent: Specifies the power to which the input signal is raised. The default is 2.

Examples
1. Raising amatrix input to a power

Consider the equation:

Y =X?
1 2 _ _ _
where X = and z = 3. This equation can be realized as:
4 8
| 1] 2|
| 4] 8
1 -
2 1z
' N 1] 5]
4 2.1 pow T q Zll 513
i 22
Exponent set externally Y =X raised to the power z
Ezponent

The pow block raises each element of the incoming matrix to power 3.

225



Chapter 12 Block Reference

PRBS

pulseTrain

226

PRBS

Block Category: Random Generator

The PRBS block produces a pseudo-random sequence of unit amplitude pulses. You
can control the frequency of oscillation and the register length.

The PRBS block can be used to see how random perturbations affect a system.
System Identification software can use the output of a PRBS block to create a
mathematical model of the system.

Register Length
Amplitude |1—
Sampling Interval IDU5—

oK I LCancel | Help |

Register Length: Controls when the sequence of pulses repeats. The default is 6
Amplitude: Specifies the maximum strength of the output signal. The default is 1.
Sample Interval: Indicates the frequency of oscillation. The default is 0.05.

Ik [>

1 iftmOdtimepu|se ==0
y= 0 otherwise

Block Category: Signal Producer

The pulseTrain block produces a sequence of unit amplitude pulses separated by
zeros. Y ou cannot control the duration of the pulse; you can only control the time
between pulses.

Y ou can add two input connector tabs to the pulseTrain block. Thetop input
connector tab lets you specify an external time delay; the bottom one lets you specify
an external time between pulses. These additional inputs override the existing
parameters. If you add only one input connector tab, it corresponds to the external
delay.



Chapter 12 Block Reference

quantize

pulseTrain Block Properties
Time Delay[zec] £
Time Betwesn Pulses | 0.07

oK I Lancel | Help |

Time Delay (sec): Specifies, in seconds, how long to delay before calculating the
value of the output signal. The default isO.

Time Between Pulses: Specifies the time between pulses. Thisis useful for
clocking delays and sample holds. The default is 0.01.

>

y= [i nteger part( )]reaol ution

resolution

Block Category: Nonlinear

The quantize block is useful for simulating approximations of a continuously
varying signal that possibly requires the use of an infinite number of valuesor levels
by a discontinuous signal with a finite number of values.

The quantize block rounds the precision of input signal based on the signs of the
input and the resolution. When the resolution is positive, the signal is rounded down
to -eo. For example, 1.9 quantized to aresolution of 1 becomes 1, and -1.9 quantized
to aresolution of 1 becomes 2. When the resolution is negative, the signal is rounded
to +oo. For example, 1.1 quantized to aresolution of -1 becomes 2, and -1.1
guantized to aresolution of -1 becomes -1.

The quantize block is applicable to simulations that involve the conversion of
analog signalsto digital signals.

quantize Block Properties
Resolution [IE

Ok I LCancel | Help |

Resolution: Specifies the value to which the input signal is rounded or truncated.
The default is 0.05.

227



Chapter 12 Block Reference

Examples

1. Quantization of a sinusoid: positive resolution
Consider avariable y such that:

y=sin(t)

quantized with aresolution of +0.5. This equation an be realized as:

SIN( T) AND QUANTIZED siNCT ) (=]

sin(t)

”E

quantlzat1on 10
resolution: 0.5 T1me (sec)

The quantize block approximates the sinusoid input using four values (0, +0.5,
-0.5, and -1).

2. Quantization of a sinusoid: negative resolution
Consider avariable y such that:
y=sin(t)

guantized with aresolution of -0.5. This equation can be realized as.

sm[ T) AMD QUANTIZED SIN(T) !EIH

= sinft ]

-\

quantlzatlon
resolution: -0.5

2 4

[

Time (sec)

The quantize block approximates the sinusoid input using four values (O, +0.5, +1,
and -0.5). By comparing these results with those in Example 1, the effects of using
positive and negative resolutionsin a quantize block becomes clear.



Chapter 12 Block Reference

ramp

realTime

/P

y =slope - (t —tgeay)
Block Category: Signal Producer
The ramp block creates a unit ramp signal based on simulation time.

ramp Block Properties
Time Delay[zec] £
Slope |1

oK I Cancel | Help |

Time Delay(sec): Indicates an offset that is used in the calculation of asignal. For a
constant-valued delay, wire the ramp block into aunitbelay or timeDelay block
with aninitial condition of the desired constant value.

Specify the offset in seconds. The default isO.
Slope: Specifies the ramp slope. The default is 1.

realTime [>

y=t
Block Category: Signal Producer

The realTime block provides the current time in milliseconds since the start of your
VisSim session. Note that thisis not simulation time.

229



Chapter 12 Block Reference

relay

230

1 if x < “deadband

y=4 1 ifx> —deadband

0 otherwise

Block Category: Nonlinear

The relay block simulates atri-state relay operator. This block is useful for
simulation switches or switching operators.

relay Block Properties
Dead Band Im

oK I Cancel | Help |

Dead Band: Indicates the width of the zone of lost motion about the input signal’s
0 value, thereby creating atri-state relay operator (-1, 0, 1). When input is less than
half the negative Dead Band value, the reTay block outputs -1. When input is
greater than half the positive Dead Band value, the relay block outputs +1. When
input lies within the range (-Dead Band/2, +Dead Band/2), the reTay block outputs
0. You cannot specify a negative value for this parameter. The default is 0.

Examples

1. Constructing atri-state switch

Consider atri-state variable y such that:
+1if x(t) > 05

y =1-1if x(t) <-05
0 otherwise

Assuming that x(t) = sin(t), this equation can be realized as shown on the next page.



Chapter 12 Block Reference

1 SINUSOID RESPONSE OF A BINARY SWITCH !E x

o]

Felay with
a deadband of 1.0 o]

=(t)
sinlt )

-2 1 1 1 1
0 2 4 & g 10

Titme (zec)

The Dead Band of the reTay block is set to 1.0. During simulation, the reTay block
changes its output state based on whether the input signal is greater than or less than

Dead Band/2.
178 [>
resetintegrator (1/S)
Txldt if [x,] <1
Y=t
X3 if [x,|>1

Block Category: Integration

The resetIntegrator block integrates the input signal with an optional reset
capability. When the Boolean input (b) is O, the resetIntegrator behaveslikea
normal integrator. When the Boolean input goesto 1, the resetIntegrator takes
the value of the reset input (r) for aslong as the Boolean value stays high.

The resetIntegrator block integrates the input signal using the integration
algorithm established in the dialog box for the Simulate > Simulation Properties
command. The available algorithms are Euler, trapezoidal, Runge Kutta 2d and 4th
orders, adaptive Runge Kutta 5th order, adaptive Bulirsh-Stoer, and backward Euler
(Stiff).

Theinputsto the resetIntegrator block are x;, x, (b), and X5 ().

Iriitial Condition lm—
oo
Checkpaint State lﬂ—

oK I Cancel | Help |

23



Chapter 12 Block Reference

232

Initial Condition: Indicatestheinitia value of the integrator upon simulation start-
up. This parameter can be overridden if x, isnon-zero on thefirst step of the

simulation. The default is 0.

ID: Represents an identification number for the block. This number keeps track of
the state number that VisSim assigns to the integrator. The number of states in any
VisSim diagram equals the number of integrators. The default is 0.

Checkpoint State: Contains the value of the integrator state at the checkpoint. If
you have not checkpointed your simulation viathe Simulate > Simulation Setup
command, the default is 0.

Examples

1. Instantaneous momentary reset

Consider a system whose dynamics are given by the differential equation:
X =sinx

When a particular variable z equals 1, x must be reset to -x. To make matters simple,
assume that z becomes momentarily equal to 1, every three seconds, and that
x(0) =5.

Equations of this type are frequently used in kinematic systems that undergo
collisions, electrical circuits that involve switching phenomena, chemical processes,
and fluid dynamics.

This system can be realized as shown below.

z

o 1/5 #
: POSITIOM OF MASS 1 (=] S
-2
-7 1 L I
u] 3 10 15 20 26 30
Time (sec)
 JCCURRENCE OF COLLISIONS 1 =] |
1.0
D 1 1 1 1
0 ) 10 15 20 25 30
Time (sec)




Chapter 12 Block Reference

Aswith any differential equation, the right-hand side of the equation is realized first
by creating avariable X, and then connecting it successively to an abs block, a
sin block, and another variable xdot.

At this point, only xdot is defined in terms of x. To define the relationship between
xdot and x, xdot is fed into the top input tab of the resetIntegrator block, which
isfedintothevariable x.

The Boolean input tab of the resetIntegratorisfed by variable z which
generates pulses that are three seconds apart. The negative value of agiven signa
can be directly generated using the -x block, and then fed into the reset input tab of
the resetIntegrator.

From the results of simulation shown in the two plot blocks, z becomes high every
three seconds, and at each of these instances, the output of the resetIntegrator is
reset to -x.

2. Statereset for aduration

Asmentioned above, the resetIntegrator output isheld at the reset value aslong
asthe Boolean input is high. To illustrate this property, consider the differential
equation:

X =sinx
When a particular variable zis equal to 1, x must be held at its current value. Assume

that z= 1 when 1 <t < 6 and that x(0) = 5. This case can be realized as shown below.

sin X

T

h i 4

5.0

Time (gec)

COCCURRENCE OF COLLISIONS !E b

Delay: 1 15
Armplitude: 1 10

20

= :
Delay: 6
Amplitude: 1

0

2 4 5

Time (gec)

233



Chapter 12 Block Reference

rt-Dataln

rt-DataQut

234

To construct z, two step blocks and a summingJunction block are used. The
delay and amplitude of the top step block are both set to 1; for the bottom step
block, they are set to 6 and 1, respectively. By subtracting the outputs of the two
step blocks and defining the output of the summingJunction blockasz, z=1
when1<t<6.

By coding z in this manner, zis redefined as z(t) = u(t - 1) - u(t - 6) where u(t)
represents a unit step. Consequently, u(t - 1) isaunit step delayed by 1 sec, and
u(t - 6) isaunit step delayed by 6 sec.

During simulation, the output of the resetIntegrator holds constant at x(1) for
theduration 1<t <6.

rt-Dataln

Block Category: Rea Time

Thert-Datazn block, in conjunction with the File > Real Time Config command,
lets you connect to an I/O real-time data card. To use this block and menu command,
you must install the VisSim/Real-TimePRO or VisSim DACQ software on your
computer. For information, see the VisSn/Real-TimePRO User’s Guide.

[>] re-DataOut

Block Category: Rea Time

The rt-Dataout block, in conjunction with the File > Real Time Config command,
lets you to connect to an I/O real-time data card. To use this block and menu
command, you must install the VisSim/Real-TimePRO or VisSim DACQ software
on your computer. For information, see the VisSn/Real-TimePRO User’s Guide.



Chapter 12 Block Reference

sampleHold

ES&HD

| iffxg 21
y= otherwise

yprevi ous

Block Category: Nonlinear

The sampTeHo1d block latches an input value under the control of aclock signal,
X4, Which is represented as Boolean input (b). When bistrue, input signal x,, which
isrepresented as input (x) is sampled and held until b istrue again. Boolean inputs
can beregularly or irregularly spaced.

sampleHold Block Properties
Initial Condition |£

,TI Cancel | Help |

Initial Condition: Indicatestheinitial condition for the samp1eHold. The default
isO.

Examples

1. Sampleand hold with regularly-spaced clock

Consider the equation:

y(n) = x(t)

sampled every 0.5 sec. Furthermore, let x(t) be aramp signal. This system can be
realized as shown on the next page.

235



Chapter 12 Block Reference

236

pulseTrain with
a time between pulses of 0.5

L ¥(N) = XIT), SAMPLED EVERY 0.5 sec [H[E

X(t) X o S&H 2

Timne (sec)

Asseeninthe plot block, the first clock pulse occurs at 0.5 sec. Until thistime, the
output of the sampleHold block iszero. At 0.5 sec, the input signal is sampled and
the valueis used as output for the sampTeHo1d block. The output of the
sampleHold block isheld at this value until the occurrence of the next clock pulse
at 1.0 sec. At thistime, the input signal is again sampled and the new valueis
presented to the output of the samp1eHo1d block, and the process repeats itself.

2. Sampleand hold with irregularly-spaced clock
Consider the equation:
y(n) = x(t)

sampled randomly. Furthermore, let x(t) be a sinusoid signal with afrequency of 2.5
rad/sec. This system can be redlized as shown below.

+ X(T): SINUSOID INPUT O] x]
1
Generation
of random clock 0
-1 1 1 I
0 5 1 1.5 2

Time (sec)
L ¥(M) = X(T), WITH RANDOM sAmMPLE & HoLo [EIEIET
2
1

Upper limit: 1.0 b
Lower limit: 0.0 e 0

1

1 !
0 5 1 1.5 2
Titne (sec)

Sinusoid input

A sinusoid block with afrequency of 2.5 rad/sec generates the sinusoid signal and
agaussian block produces arandomly varying signal. The randomly varying



Chapter 12 Block Reference

scalarToVec

signal is converted to arandom clock by taking the absolute value of the random
signal and then using only the integer portion of it. The output of the int block is
passed through a 1imi t block to restrict the signal to the range (0, 1). The output of
the Timit block is connected to the top input of the sampTeHo1d block. The output
of the samp1eHold block is connected to the variable y(n),which is connected to
aplot block. The actual input, x(t) is monitored separately in another p1ot block.

By comparing the outputs in the two p1ot blocks, the output of the samp1eHo1d
block is arandomly sampled and held version of the input sinusoid.

SOV

Block Category: Annotation

The scalarTovec block reduces wiring clutter by letting you combine input signals
into asingle vector wire. Thisisusually a prerequisite for performing vector and
matrix algebra. Use the vecToScalar block to unbundle vector wires.

Examples

1. Creation of avector

Consider the equation:

Z=33Y

T

where Z and Y are vectors. Further, assumethat Y =[123]".

This equation can be realized as:

1 oS- 33

2 2 » 7 6.6

3 3 5.9
Creation of a Vector Vector Algebra: Z=33Y

ThedispTlay block displays all the elements of the incoming vector line. The results
indicate that the vector operation is performed correctly.

2. Creation of a matrix

Consider the equation B = A™, where

237



Chapter 12 Block Reference

1 -2
A=|4 5
7 8

© o w

The above equation can be realized as:

S
1.2
1.3

;

21 125 -1.75 1.125

22 [ -25 5 25

23 125 P16667 -541667

Al
32 WVector Algebra: B = inv (A)
33

[of o[~ »]-
YYVYYYYY

Creation of a Matrix

ThedispTlay block displays all the elements of the incoming matrix line. The
results indicate that the matrix operation is performed correctly.

> sign [>

sign
1 ifx>0
y=< 0 ifx=0
-1 ifx<O

Block Category: Arithmetic

The sign block determines the sign of the scalar input signal. The sign block
outputs +1 when the input is greater than zero; -1 when the input is less than zero;
and 0 when the input is zero.

Examples

1. Computation of thesign of sin(t)

This equation can be realized as:

238



Chapter 12 Block Reference

sin

i SIGN (SIN(T)) O x
2

1
- 0= ~ ~
sigh
Ak
1 | 1

1] 2 4 4 8 10
Time {sec)

USIN(T) H[=] 3

1.0
5
. 0
L
t sin(t)

-5

.ID 1 1 1 Il

0 2 4 é H 1

Time (sec)

-2

0

The results obtained indicate that when the input is greater than zero, the sign block
outputs +1, when the input is less than zero the output is-1, and when the input is

zero, the output is 0.
[ sin [>

y=sinx

Block Category: Transcendental

The sin block produces the sine function of the input signal. The input signdl is
represented in radians.

Examples

1. Computation of sin(26) = (cos(6) + sin(6))?- 1

With 6 chosen to be nt/4, the above trigonometric identity can be realized as:

0785300
4

(sin theta + cos theta)*2 - 1

2> sin

sin( 2 theta)

239



Chapter 12 Block Reference

sinh
eX_ g%
y= 5
Block Category: Transcendental
The sinh block produces the hyperbolic sine function of the input signal. The input
signal is represented in radians.
Examples
1. Computation of sinh(26) = 2 sinh(6) cosh(6)
With 6 chosen to be 1t/2, the above trigonometric identity can be realized as:
.
157143 ] thet Coli [ 11584 |
lp\ P2 = H I 2 2 sinh(theta) cosh( theta)
P sinh —p] 15634 |
sinh( 2 theta)
sinusoid Up

y=A-sn(o-(t—tya))

Block Category: Signal Producer
The sinusoid block creates a unit sine wave signal.

sinuzoid Block Properties
Time Delay[sec] IE

Frequency [Hz] |0 1531543431

Amplitude |1
Ok I LCancel | Help |

Time Delay (sec): Indicates an offset that is used in the calculation of asignal. For
a constant-valued delay, wirethe sinusoid block into aunitbelay or timeDelay
block with an initial condition of the desired constant value. Specify the offset in

seconds. The default isO.

240



Chapter 12 Block Reference

slider

Freguency (rad/sec): Controls the frequency of oscillation of the output signal.
Specify the frequency in radians per second. For example, if you specify afrequency
of 1, one oscillation completesin 2 seconds. If you specify afrequency of &, one
oscillation completesin 0.5 seconds. The default is 1.

Amplitude: Specifies the maximum strength of the output signal. The default is 1.

]

Block Category: Signal Producer

The s1ider block allows mouse input to dynamically modify asignal value during
asimulation, between alower and upper bound in 1% and 10% increments. The
s1ider block displays the current value applied to the signal. Use the scroll bar to
adjust the signal value.

Slider precision is affected by the High Precision Display parameter under
Preferences in the dialog box for the Edit > Preferences command. When activated,
dlider precision is shown at up to 15 significant digits, when de-activated, slider
precision is shown at up to 6 significant digits.

Curent Yalue IE—
Upper Bound |1UU—
Lower Bound |mn—

0K I LCancel | Help |

Current Value: Specifiestheinitial value of the slider output signal. The default
isO.

Upper Bound: Specifiesthe largest value the dider output signal can attain. The
default is 100.

Lower Bound: Specifiesthe smallest value the slider output signal can attain. The
default is-100.

24



Chapter 12 Block Reference

S(]I‘t
y=+x
Block Category: Transcendental
The sqrt block produces an output signal that is the square root of a positive input
signal. The sqrt block does not accept negative inputs. And, there is no square root
of 0.
Examples
1. Computation of the sqrt(a® + b? - 2ab) = (a - b)
With a and b chosen to be 7 and 4 respectively, the above equation can be realized
as.
[ 4]
sqrt( a2 + b2 - 2ah)
7 >
a b] .
b e
(a-h)
[> LB
(D
stateSpace

Block Category: Linear system

The stateSpace block is used to represent a multi-input multi-output linear system
in state-space form. The state-space matrices can be specified in the following ways:

e Asan .M filecreated with VisSim: The Analyze > Linearize command
generates ABCD state-space matrices from a nonlinear system by numerically
evaluating the matrix perturbation equations at the time the simulation was
halted. For more information, see the VisSim/Analyze User’s Guide.

e Asan .M filecreated with a text editor: When you create a.M file with atext
editor, follow these rules: start each matrix on a new line; enclose matrix
elements in square brackets and terminate with a semi-colon; separate matrix
elements with spaces; separate matrix rows with semi-colons.

242



Chapter 12 Block Reference

Thefollowing is an example of auser-written .M file:

function [a,b,c,d] =vabcd
a=[-.396175-1.17336 ; 5.39707 .145023 ];
b=[-.331182 ;-1.08363];

c=[01];

d=[0];

Note that MatLab commands other than array initialization are not allowed.

Asa .MAT filecreated with MatL ab: Generating .MAT filesis described in
the MatLab documentation. Note that when you save the ABCD matricesto a
file, the names of the matrices are not important; however, the order in which

they appear is.

When you simulate the block diagram, VisSim numerically solvesthe stateSpace
block.

VisSim supports state-space systems up to the 90th order.

State Space Properties [%]

5 pecification Method mats.m Fil

Iriitial State: |U

& imFie

I Discrste State Count: 0 Selact File..
dr. B0t Output Count: 01 Browse Data.. |

File Filg Mame: l\kihcdm—

Input Count: a

[Rightmost value comesponds ko battam state element)

Ok I LCancel Help

Specification Method: Y ou have the choice of three specification methods:

Discrete: Indicates a discrete Z-domain system. Enter the time step for the
discrete transfer function in the dT box. By default, this parameter is de-
activated, which indicates a continuous transfer function.

.mat File: Indicates that the system isto be specified asaMatLab .MAT file.
Specify the name of the .MAT file in the .mat/.m File group box.

.m File: Indicates that the system isto be specified asan .M file. Specify the
name of the .M filein the .mat/.m File group box.

dT: Specifiesthetime step for the discrete system. By default, VisSim uses step
size parameter from the Simulate menu’ s Simulation Setup command.

Initial State: Specifiesinitial values for the statesin the block. The values are right-
adjusted. The right-most value corresponds to the lowest order state. Unspecified
states are set to 0.

243



Chapter 12 Block Reference

step

stop

244

File Name: Indicates the name of the .M or .MAT file to be used asinput to the
statespace block. You can type the file name directly into this box or select one
using the Select File button. To open the specified file with the default text editor,
click on the Browse Data button.

Input Count, Output Count, and State Count: Indicate the number of inputsto
the block, the number of outputs from the block, and the number of system states.
The number of system states is determined by the size of the A matrix. These options

are read-only.

b

0 ift <tyaay
y= A otherwise

Block Category: Signal Producer
The step block creates a unit step signal.

step Block Properties
Time Delay(sec] Im
Amplltudel'l

0K I LCancel | Help |

Time Delay(sec): Specifies, in seconds, how long to delay before calculating the
value of the output signal. The default isO.

Amplitude: Indicates the maximum strength of the output signal. The default is 1.

[ stop

| > 2 halt simulation unconditionally
X
>1 halt current run; start next run

Else normal

Block Category: Signal Consumer

The stop block conditionally halts a simulation when the input signal is non-zero.
For amulti-run simulation, when the input value is 1, VisSim halts the current run,
increments $runCount, and starts the next run if the Auto Restart parameter in the



Chapter 12 Block Reference

stripChart

dialog box for the Simulate > Simulation Properties command has been activated.
When the input valueis 2, VisSim stops the multi-run sequence altogether.

E Strip Char‘t—l

strip chart = X;... X4
Block Category: Signal Consumers

The stripchart block displays up to four signals in a customizable scrolling
window. For more information, see page 67.

summingJunction §®>

Y= X1+ Xo+ ... Xy
Block Category: Arithmetic

The summingJunction block produces the sum of two signed input signals. You
can toggle the sign of the input signals (switch from positive to negative and vice
versa) by holding down the cTRL key and clicking the right mouse button over the
connector tab.

Inputs can be scalars, vectors, and matrices. When vector and matrix inputs are of
unegual lengths, the summingJunction block defines the output vector or matrix to
be the maximum composite size of all the incoming vectors or matrices and extends
all other incoming vectors and matrices to match the length of the longest incoming
vector or matrix, by padding each of them with the requisite number of zeros.

245



Chapter 12 Block Reference

Examples
1. Addition of two scalar quantities

Consider the equation y(t) =t + sin(t). This can be realized as:

LY(T) =T + SIN(T)

[ O = = =1

2. Subtraction of two vectors

Consider avector x =[1 1.2 -2.3], and another vector y =[1 1 1]. The vector
difference z = x - y can be computed directly by using a summingJunction block

as.
S-r\
12 21 o x|
-23 31
0
= 2
33
S-r
O
3.1

The vector display shows that the result of the simulation is a direct element-by-
element subtraction of vector y from vector x.

3. Matrix addition and subtraction

Consider the matrix equation:

Z=A+B-C
where:
1 35 1 -2 1 1 1 6
A=|2 4 6;B=| 3 -4 3|[;C=|5 -1 9
7 90 -5 6 -5 2 15 -6

This equation can be realized as shown on the next page.
246



Chapter 12 Block Reference

The matrix display shows that e result of the simulation is a direct element-by-
element matrix operation of A+ B - C.
[ tan [>

tan
y = tanXx

Block Category: Transcendental
The tan block produces the tangent of the input signal. The input signal must be

represented in radians.

247



Chapter 12 Block Reference

Examples
1. Computation of tan(26) = 2 tan(8) / (1 - tan%(®))
With 6 chosen to be mt/3, the above trigonometric identity can be realized as:

104762 fan

pif3
[ 2> tan
tan( 2 theta)
tanh >{ tanh [ >
- e
y= ==

e*+ e
Block Category: Transcendental

The tanh block produces the hyperbolic tangent of the input signal. Theinput signal
must be represented in radians.

Examples
1. Computation of tanh(26) = 2 tanh(8) / (1 + tanh?%(8))
With 6 chosen to be n/4, the above trigonometric identity can be realized as:

™ 2
g 7

[0.785714 |—m| theta |——m]| tanh |
pila

2 tanh( theta) / (1 + tanh*2(theta})

(2> A17253

tanh( 2 theta)

248



Chapter 12 Block Reference

timeDelay

E SELE

The timebelay block delays the input signal for an absolute time. The input
connector tabs are marked t (for the time delay) and x (for the main signal). This
block isintended to model a continuous delay in a continuous simulation. Use the
unitbDelay block to model adigital delay.

y=x(t-Tq)

Block Category: Time Delay

timeDelay Block Properties
Initial Condition IE
Maw Buffer Size|128

juis I Lancel | Help |

Initial Condition: Setsan initial condition for the delay. The default is 0.

Max Buffer Size: Controls the granularity of the resulting timeDelay signal. If the
signal istoo granular, increase the value. The default is 128.

The timebelay block requires a buffer element for each time step in the requested
delay amount. The buffer size should be set to the maximum delay time you need
divided by the simulation time step.

Examples

1. Introduction of a constant delay

For agiven signal, a constant delay can be introduced as:

Arnount of Delay ; : PLOT M=
[0.2] - 2.0
M & Td _..
» 1.5
1.0
. i)
Signal
|2 0 1 1 1 1
i 2 4 L] 8 1
Time (sec)

249



Chapter 12 Block Reference

Here, a ramp block is used to produce atest signa and a const block is used to
produce atime delay of 0.2. For this example, the simulation step size is set to 0.01.

The amount of delay connected to the t input tab must be an integral multiple of the
simulation step size. If you had entered 0.027 as the amount of delay and re-run the
simulation, VisSim would have issued an error message. This error occurs because
VisSim starts the simulation at t = 0, and steps through at intervals of 0.01. The time
intervalsthat are hit are 0, 0.01, 0.02, 0.03, and so on. The time delay 0.027 is not
honored.

If you choose to ignore the error (by clicking on the Retry or Ignore buttonsin the
message box), VisSim rounds off the delay to the next nearest time step, whichin
this case happens to be 0.03, as shown below:

Arnount of Delay . PLoT H=E=
0.027 L 20
X
15
0
. 05
Signal
_ * 0 1 1 I 1 I I I
1} .01 0203 04 05 06 07 0 .04 A
Time {gec)

2. Introduction of an integral-multiple delay

One way to achieve multi-step delaysis by using the timeDelay, $timeStep, and
gain blocks, as shown below:

JtimeStep

Gain

. PLOT A==
Amount of Delay

_ * 0 1 1 1 1 1 1 1

Signal a o102 03 04 05 06 07 08 09 1
'gha Time {sec)

During simulation, the value sent to the t input of the timebelay block is 3 *
$timestep, and as aresult, the output of the timeDelay block isthree steps
behind the input signal.

250



Chapter 12 Block Reference

3. Introduction of atime-varying delay

Thereal power of the timeDelay block becomes apparent when you implement
time delays that are themselves time-varying. As an example, consider the following
equation:

y = sin(t - [sin(t))

Here, theintent isto delay (or shift right) asinusoid of frequency = 1 rad/sec, by a
time-varying amount given by the absolute value [sin(t)|. This can be realized as:

{ AHOUNT OF DELAY [ [o]-]

|sin(f| with w =1 radisec 50
abs B

1 1 1
a 248 ] 7.8 10 125 18 178 20
Time (sec)

CSIN (T - ISINGTH ) H=1E

Amount of delay LT 1.0
Hyl® 5

¥, » 10 . ) .
Signal 0 25 5 75 10 125 1% 175 20
w=1 radisec Time (sec)

An abs block computes the absolute value of sin(t), generated by a sin block. The
output of the abs block isfed to thet input of the timeDelay block. Another sin
block generates the actual signal to be delayed. Thetop pTot block shows the time-
varying delay being implemented. The bottom p1ot block shows the actual and
delayed signals.

251



Chapter 12 Block Reference

transferFunction

252

y

N/
oS
N

n n-1
_ans +a,4S T...q4St Qg

b,s" +b, ;" ...bs+ by,

Block Category: Linear System

The transferFunction block executes a single-input single-output linear transfer
function specified in the following ways:

Asan .M file created with VisSim: The Linearize command in the Analyze
menu generates ABCD state-space matrices from the nonlinear system by
numerically evaluating the matrix perturbation equations at the time the
simulation was halted. For more information, see the VisSinvAnalyze User’'s
Guide.

Asan .M filecreated with atext editor: Thefollowing isan example of a
user-written .M file:

function [a,b,c,d] =vabcd

a=[-.396175-1.17336 ; 5.39707 .145023];

b=[-.331182; -1.08363 ];

c=[01];

d=[0];

Asa .MAT filecreated with MATLAB: Generating .MAT filesis described in

the MatLab documentation. Note that when you save the ABCD matricesto file,
the names of the matrices are not important; however, the order in which they

appear is.

When you simulate the block diagram, VisSim numerically solvesthe
transferFunction block.

Digital filter design: The transferFunction block supports IR and FIR digital
filter design. For more information, see Chapter 9, “Designing Digital Filters.”

Setting up atransfer function: The transferFunction block’s Properties dialog
box allows you to control how the numerator and denominator polynomials are
entered.



Chapter 12 Block Reference

Transfer Function Properties

— Specification Method .mat/.m File:

& Polyromial IR Filter Fie: frsbodm

€ mat File B
 mFile

[~ Tapped Delay

[~ Discrete  dT: [0.05

7| Wisplaw Filten b etied

SelectFiler. | ﬂluwseDala...l

Convert 532

Initial Y alue: ID

Gain: 1 [loveest order state on right]
r— Polynomial Coefficien
Mumerator:

Denaminatar: |1

ak. I Cancel Help

Specification Method: Y ou have three choices of specification method:

o Polynomial Coefficient: Indicatesthat the transfer function isto be specified
as numerator and denominator polynomials. Supply the numerator and
denominator polynomials and gain under the Polynomial Coefficients group
box.

e .mat File: Indicatesthat the transfer function is to be specified as a .MAT file.
Specify the name of the . MAT filein the .mat/.m File group box.

e .mFile Indicatesthat the transfer function isto be specified asan .M file.
Specify the name of the .M filein the .mat/.m File group box.

Discrete: Indicates a discrete Z-Domain transfer function. Enter the time step for
the discrete transfer function in the dT box. By default, VisSim uses the step size
established with the Simulate > Simulation Properties command.

When Discrete is de-activated, a continuous transfer function is created.

Tapped Delay: Provides tapped delay implementation for high order FIR filters.
For more information, see Chapter 9, “Designing Digital Filters.”

dT: Specifiesthetime step for the discrete transfer function. By default, VisSim
uses step size parameter from the Simulate > Simulation Properties command.

Display Filter Method: Displaysthefilter specification on the block. When
Display Filter Method is not activated, VisSim displays the polynomial coefficients.

IR Filter: OpensthelIR Filters Setup dialog box to design a suitable filter using
analog prototypes. For more information, see Chapter 9, “Designing Digital Filters.”

FIR Filter: Opensthe FIR Filter Setup dialog box to construct Regular Finite
Impulse Response filters, differentiators, and Hilbert Transformers. For more
information, see Chapter 9, “Designing Digital Filters.”

253



Chapter 12 Block Reference

254

Convert S->Z: Usesbilinear transformation to convert a continuous transfer
function to an equivalent discrete transfer function with a sampling interval of dT.
VisSim requests a discrete sampling rate prior to performing the conversion.

An example of the conversion is shown below.
H (S) — i
s+a
The bilinear transformation can be implemented by the substitution:
2 z-1
——— >
dr z+1
The above transfer function becomes:
a

Mar @ =N -1]
(N

VisSim automatically simplifies this representation and enters the appropriate
coefficients for the numerator and denominator polynomials.

Convert Z ->S; Uses hilinear transformation to convert a discrete transfer function
to an equivalent continuous transfer function. For example, consider:

z
Her (2 =——

ar(@=——
The bilinear transformation can be implemented by the substitution:

2+dT.s
_)
2—-dT.s

The above discrete transfer function becomes:

2+dT.s
(2+2b)+(dT —b.dT)s

Har (9) =

VisSim automatically simplifies this representation and enters the appropriate
coefficients for the numerator and denominator polynomials.

It isimportant to note that in both transformations, the results obtained are
dependent on the sampling interval dT. In other words, for a given continuous or
discrete transfer function, an infinite number of equivalent discrete or continuous
transfer functions may be obtained by varying the sampling interval dT.

File: Indicatesthe name of the .M or .MAT file to be used as input to the
transferFunction block. You can type the file name directly into this box or
select one using the Select File button.



Chapter 12 Block Reference

transpose

Initial Value: Specifiesinitia values for the statesin the block. The values are
right-adjusted. The right-most value corresponds to the lowest order state.
Unspecified states are set to 0.

Gain: Indicatesthe transfer function gain. If the leading terms of the numerator and
denominator coefficients are not unity, VisSim will adjust the gain to make it so. The
default valueis 1.

Denominator: Indicates the denominator polynomial for the transferrFunction
block. VisSim determines the order of the transfer function by the number of
denominator coefficients you enter. For example, an nth order transfer function will
have n + 1 coefficients. Separate coefficients with spaces.

Numerator: Indicates the numerator polynomial for the transferFunction
block. Separate coefficients with spaces.

o] =[a]

Block Category: Matrix Operation

The transpose block interchanges each row with the column of the same index
number. Thus, if A = [aij ] , thenthe transpose of Ais: AT = [aji ]

The transpose block accepts one vector input and produces one vector output.

Examples
5y
) T 2]
2‘1 d 3] 4]
2,2
0 . 1] 3]
" 2| 4

255



Chapter 12 Block Reference

uniform

unitConversion

256

A [>

The uniform block creates a uniformly distributed random noise signal with values
between zero and one. The random seed is set under Preferencesin the dialog box
for the Simulate > Simulation Properties command.

Block Category: Random Generator

noize Block Properties
Time Delay[zec] £

oK I Lancel | Help |

Time Delay(sec): Indicates, in seconds, how long to delay before calculating the
value of the noise signal. The default is 0.

D celsius => celsius

Block Category: Arithmetic

The unitcConversion block changes the unit of measurement of the data. Y ou can
convert the unit of measurement within numerous categories, including:
acceleration, area, capacitance, charge, conductivity, current, energy, flow rate,
force, inductance, magnetic flux, mass, position, power, pressure, speed,
temperature, volume, and more. For example, you can convert from Fahrenheit to
Cedlsius, watts to kilowatts, or joulesto BTUs.

Conversions are always displayed on the block.

Unit Conversion Properties
Class: emperaturd
Fram Ifahlenhe\t hd
To: Icelslus hd
Ok I Cancel |

Class: Indicates the category of measurement.

From: Indicates the unit of measurement for the data exiting the block. Click on the
DOWN ARROW t0 select a unit of measurement.

To: Indicates the unit of measurement for the data entering the block. Click on the
DOWN ARROW to select a unit of measurement.



Chapter 12 Block Reference

unitDelay

ngb

| Youtter» Youtter = X2 if |X1| 21
Yprevi ous otherwise

Block Category: Time Delay

Theunitbelay block specifies aclocked unit delay. The input connector tabs are
marked b (for Boolean clock) and x (for main signal). When the Boolean clock does
not equal zero, the value contained in the single element buffer is copied to the block
output (where it holds this value until the next non-zero Boolean clock). The current
value of the main signal is stored in the unit buffer.

Theunitbelay block isintended for modeling adigital delay in a continuous
simulation. A typical digital delay is modeled by wiring apulseTrain block to the
Boolean input connector tab of the unitbelay block. Usethe timebDelay block to
model a continuous delay.

Initial Condition lE—
ojo
Checkpaint State IU—

oK I Lancel | Help |

Initial Condition: Setsaninitial value for the output signa. The default is 0.
ID: Reserved for future use.

Checkpoint State: Contains the value of the unit delay at the checkpoint. If you
have not checkpointed your simulation viathe Simulate > Simulation Properties
command, the value is 0.

257



Chapter 12 Block Reference

258

Examples
1. Clockingtheunitbelay block

If you are working with unitbelay blocks, it is good programming practice to
create a clock signal that you can use in every simulation. A typical clock signal can
be generated as:

(0] :m
Tirne Delay I
FtimeStep

Time Between Pulses

Here, apulseTrain block isassigned two external inputs:

e Thetopinputisthetime delay for the pulseTrain block. Thetime delay value
for the pulseTrain block isthe amount of timethe pulseTrain block waits
before producing pulses. Thistime delay value must not be confused with the
amount of time delay generated by the unitbelay block.

e  The bottom input is the time between pulses.

The output of the pulseTrain block isfed to the variable clock. Thisvariable
can be used anywhere in the simulation to clock unitbelay blocks.

2. Introduction of a one-step delay

For agiven signal, aone-step delay can be introduced as:

Output delayved by : PLoT =] =
b one time step .08
w102 >
.04
02
Input
IZ # D 1. 1 1 1
i} .1 nz2 03 .04 BRIl
Time (sec)

During simulation, the actual and delayed signals are plotted in the pTot block. The
output of the unitbelay block is delayed by one step (equal to 0.01 in this case) as
compared to the input.



Chapter 12 Block Reference

unknown

3. Using amulti-step delay with cascaded unitbelay blocks

To achieve multi-step delays, unitbelay blocks that implement one-step delays,
can be cascaded. Consider the example where a three-step delay is introduced:

clock synchronizes all
117 blocks with the simulation step

Output delayed by :IPLOT A==
three time steps 06

->| clock

1} .0 .02 .03 o4 05
Time {sec)

Cutput of three cascaded unitDelays

Three unitbelay blocks, all clocked at the simulation step, are cascaded. Since
each unitbDeTlay introduces a one-step delay between itsinput and output, the
output of the third unitbeTay block is delayed by three steps compared to the
input. The pTot block shows this behavior, with a simulation step size of 0.01.

[ unknown [ >

Block Category: Optimization

The unknown block works in conjunction with constraint blocksto solve
equations for unknowns using Newton-Raphson iteration. For each unknown, there
should be a constraint block that isfed directly or indirectly by the unknown.
The maximum iteration count, error tolerance, and perturbation are established under
the Implicit Solver tab in the dialog box for the Simulate > Simulation Properties
command. For more information, see Chapter 7, “ Solving Implicit Equations.”

259



Chapter 12 Block Reference

userFunction

variahle

vecToScalar

260

D userFunction

TheuserFunction block lets you create blocks bound to Dynamic Link Library
(DLL) functions. For more information, see Appendix B, “Extending the Block Set.”

DLL Properties [ %]

DILL File: userFunclion Select
Base Function: I

oK | Cancel | Help |

DLL File: Indicates the name of the DLL file containing the user function.

Base Function: Indicates the base name of the function.

[ variable [ >

Block Category: Annotation

Thevariable block lets you name asignal and transmit it throughout your diagram
without the use of wires. For more information, see page 129.

V->5

B 2>

Block Category: Annotation

The vecToscalar block separates a single vector wire into individual output
signals. Usethe scalarTovec block to bundle signals into asingle vector wire.



Chapter 12 Block Reference

vsum

P vsum

Block Category: Matrix Operation

The vsum block produces a single value summation of all the elementsin the matrix.
The vsum block accepts one vector input and produces one scalar output.

Examples
1 2
> 3 4

wirePositioner D—D

Xxor

Block Category: Annotation

ThewirePositioner block lets you create a specific wiring path. A
wirePositioner block isessentially an input connector tab and an output
connector tab that are attached by aflexWire. Since wi repositioner blocks don't
take any additional computation time, you won’'t see a decrease in performance
during asimulation.

Input to the wi rePositioner block can be scalar or vector.

E xor [>
y = X, bitwise XOR x,
Block Category: Boolean

The xor block produces the bitwise exclusive OR of two to 256 scalar input signals.

If you click the right mouse button over the xor block, the Boolean block menu
appears allowing you to assign a different function to the block.

261



Chapter 12 Block Reference

Examples

1. Usingthe xor block

Consider avariable y such that:

Ifa>4orc<5, theny=cos(t); elsey=0. Alsp,ifa>4andc<5,y=0

wheret is simulation time. Furthermore, let t be the input to parametersa and c. This
system can be realized as:

_ O] x
2
1
A | |
0 | | |
0 A 4 s 8 10
Time (sec)
[ vy HEE
1.0
5
0
-5
10 1 1 1 1
&) 2 4 & 2 10
Time (sec)
_ (O] %
1
cos I 0
1 | f | |
0 2 4 [ 8 10
Time (sec)

Asshown in the two pTot blocks, the output of the xor block evaluatesto falsein
theinterval t = (4, 5), since both the inputs to the xor block are truein thisinterval.
Consequently, y takes on the value of 0. The output of xor evaluatesto truein the
remaining parts of the simulation, and as aresult, y takes on the value of cos(t) in
these periods.

262



Appendix A
Customizing VisSim

This chapter covers the following information:
e Customizing VisSim start-up

e  Customizing the VisSim window

e  Creating custom implicit solvers

e Creating custom global optimizers

Customizing VisSim start-up

By adding arguments to the VisSim start up command, you can control such things
as how VisSim starts up, the block diagram file opened at start up, and whether
VisSim immediately simulates the opened diagram.

» TocustomizeVisSim start-up
1. Refer to your Windows documentation for instructions on displaying the
properties of a program.

2. Under Windows 3.1+, enter one or more of the following argumentsin the
Command Line box. Under Windows 95 and NT, click on the Shortcuts tab and
enter one or more of the following arguments in the Target box.

263



Appendix A Customizing VisSim

If you enter more than one argument, separate them with spaces. If a block
diagram nameisincluded in the argument list, it must be specified last.

Use thisargument To

block-diagram-name Start VisSim and open the specified block
diagram.

-i [block-diagram-name] Start VisSim as an icon and optionally open a
block diagram.

-nb [block-diagram-name] Start VisSim without the start-up banner and
optionally open ablock diagram.

-ne Suppress the simulation completion dialog box.

-r block-diagram-name Run a simulation read in from the specified block
diagram upon start up.

-re block-diagram-name Run a simulation read in from the specified block

diagram and exit VisSim upon completion.
5. Click on the OK button.

Customizing the VisSim window

The VisSim window contains a menu bar, toolbars, scroll bars, a status bar, and a
diagram tree. Y ou can display or hide these items at any time during aVisSim
session. For example, if you' re working on alarge ablock diagram, you may want to
hide the status bar and diagram tree so you can see as much of the diagram as
possible. When you simulate the diagram, you may want to display the status bar to
keep track of progress of the simulation.

» Tohideor display VisSim window elements
e Do oneor more of the following:

Todisplay or hide Do this

Scroll bars Choose Edit > Preferences. Select the Preferences tab, and
select or clear the Show Horizontal Scroll Bar or Show
Vertical Scroll Bar check box.

Status bar Choose View > Status Bar.

Toolbar Choose View > Toolbar. Select or clear each toolbar check
box.

Diagram tree Drag the right edge of the diagram tree.

264



Appendix A Customizing VisSim

Customizing the toolbar

Y ou can create a custom toolbar that contains buttons for commands and blocks you
use most frequently. Y ou can also create your own images for the buttons. The
custom toolbar is named User.

>
1

2.

To create a custom toolbar button
Choose View > Toolbar.

Activate the User option, if it isnot already activated, then click on the OK
button, or press ENTER.

Choose Edit > Toolbar.
The Customize Toolbar dialog box appears.

Customize Toolbar

User Buttons

Function: IFiIe->P|inle| Setup VI
Barameter I

Help String;

Bitmap: I Eind |

Under User Buttons, select a button number.

In the Function box, click on the DowN ARROW and select the command to be
assigned atoolbar button. If you select:

e Blocks— (P), click on the DOWN ARROW in the Parameter box and select a
block to be associated with the toolbar button.

e Edit—Find (P), File—Add (P), or File—Open (P), you can optionally enter
avariable block name or file name in the Parameter box. If you do not enter
anything, VisSim opens the Find, File Add, or File Open dialog box when
you click on the toolbar button.

In the Help String box, you can optionally enter text that will appear in the
status bar when you point to the toolbar button. If you do not enter anything,
VisSim displays the default help string for the toolbar button.

Click on the Find button to choose a bitmap for the toolbar button. Pre-made
button bitmap images can be found in \VISSIM30\BITMAPS\TOOLBAR.

Custom bitmap should be 16-pixels wide by 15-pixels high for the best display.

265



Appendix A Customizing VisSim

266

N P Y

4,

Click on the OK button, or press ENTER.

To remove a custom toolbar button

Choose Edit > Toolbar.

From the toolbar button list, select the toolbar number that corresponds to the
toolbar button to be removed from the toolbar.

In the Functions box, click on the DOwN ARROW and select <none>.

Click on the OK button, or press ENTER.

Customizing other screen settings

In addition to changing general VisSim settings, you can also change many other
settings to customize how VisSim looks, such as the use of colors and text fontsin
your diagrams, the shape and color of connector tabs, and the amount of information

displayed with each block in a diagram.

These settings are controlled with the Edit > Preferences command and the
commands under the View menu. When you select a setting, it takes effect
immediately and remainsin effect until you changeit.

» Tochangethedisplay settingsin VisSim

Do one or more of the following:

To

Do this

Hide input connector tabs and
shrink the size of output connector
tabs

Hide wires and connector tabs,
freeze blocksin place, and with the
exception of interactive el ements
on button and s1ider blocks,
lock block parameter values

Color connector tabs according to
the type of data entering or exiting
the block

Choose View > Presentation Mode.

Choose View > Display Mode.

Typicaly this mode is used when thereis
animation in your simulation or you've
constructed an instrumentation panel to monitor
and control your simulation.

Display mode can be turned on or off for
individual block diagram levels.

Choose View > Data Types.

The four types of data and their corresponding
connector tab colors are double-floating point
(red), signed integer (green), unsigned integer
(blue), and vector (magenta).



Appendix A Customizing VisSim

To

Do this

Display connector labels on
compound blocks

Change how text is displayed on
blocks

Retain character format in
comment blocks

Change the color of the VisSim
screen; plotting background on
plot, stripchart, and
histogram blocks; wires; and
diagram text

Display block names benesth each
block

Display parameter values, file
names, and block names beneath
each block

Color compound blocks light blue

Display block diagramsin black
and white

Creating custom implicit solvers

Choose View > Connector Labels.

Choose View > Fonts. Select the text attributes.

Character format can be selectively applied to
Tabe1 blocks, as described on page 198.

Rich text format can beretained in comment
blocks, as described below.

Choose Edit > Preferences. Select the
Preferences tab. Activate Use Rich Text
Format.

Choose View > Colors. Select the color for the
corresponding screen element.

When you choose a default color for the
plotting background, VisSim uses the specified
color on al meter, plot, and stripcChart
blocks except those whose background colors
were explicitly set in their Properties dialog
boxes.

Choose Edit > Preferences. Select the
Preferences tab. Activate Training Mode
Labels. Then choose View > Block Labels.

Choose Edit > Preferences. Select the
Preferences tab. Clear Training Mode Labels.
Then choose View > Block Labels.

Choose Edit > Preferences. Select the
Preferences tab. Activate Color Compound
Blocks.

Choose Edit > Preferences. Select the
Preferences tab. Clear Color Compound Blocks
and Color Display.

Y ou can write an implicit static solver asa.DLL file. VisSim recognizes and uses a

user-written solver only if:

e Itisnamed VSOLVER.DLL

e Itresidesinyour current directory when you initiate implicit static solving

267



Appendix A Customizing VisSim

268

e |t contains an exported function called userSolver()

e The User Solver parameter in the dialog box for the Simulate > Optimization
Properties command is activated

Source files for building a custom implicit solver

The following table lists the source files for building an implicit static solver. These
filesareinstaled in \WVISSIM30\V SOLVER and \VISSIM30\V SDK. They contain
code for building a simplified Gauss-Seidel static solver. You may find it easier to
edit the files to create your own static solver. To use thesefiles, they must remainin
the directories in which they currently reside.

Sourcefile Description
VSOLVER.FOR or A Fortran or C source file for the implicit static solver. The heart
VSOLVER.C of the solver is the vissimRequest() function that you call to obtain

theinputs to the constraint blocks and to supply valuesto the
outputs of the unknown blocks. Using vissimRequest(), you can
write awide variety of solvers. For more information, see the
description below.

VSOLVER.DEF A definition file with linker commands to build a.DLL file from
object code. Windows requires that you use a definition file to
link the object code.

VSOLVER.MAK A make file with rules for automatically building a.DLL file.

VSUSER.H A C language header file with function prototypes and command

definitions for the vissimRequest() function.

Using vissimRequest() in a custom implicit solver

The vissimRequest() function is a general-purpose function for making requests to
VisSim. A user-written solver uses vissimRequest() to read and write optimization
information in ablock diagram. The general format of vissmRequest() is:

long FAR vissimRequest (long req, long arg2, long arg3 )
Thefirst argument (long req) is a message code describing the action for VisSim to
take. The list of message codes is defined in the file named VSUSER.H, which is

installed in \VISSIM30\V SOLV ER. The message codes that pertain to writing a
local static solver are listed in the table on the next page.



Appendix A Customizing VisSim

M essage code Description
VR_EXECUTE Executes the diagram on iteration without moving

VR_GET _BLOCK_PARAMS

VR_GET_CONSTRAINTS

VR_GET_SOLVER_INFO

VR_GET_UNKNOWNS

VR_GET_UNKNOWNS INPUT

VR_GET_VERSION
VR_GET_VISSIM_STATE

VR_SET_UNKNOWNS

time.

Returns a pointer to a block’ s parameters.

Arg2 returns a vector of local constraint values.
Ordering of the elements vector can be determined by
the value of the ID parameter for the constraint
block. VisSim sorts in sequentia order, from low to
high.

Arg2 returns information related to the diagram and
the implicit solver dialog settingsin the following
manner:

arg2[ 0] = number of constraints
arg2[ 1] = number of unknowns
arg2[ 2] = relaxation value

arg2[ 3] = maximum iteration value
arg2[ 4] = error tolerance value

Arg2 returns a vector of current local unknown output
values. Ordering of the elements vector can be
determined by the value of the ID parameter for the
unknown block. VisSim sortsin sequential order,
from low to high.

Arg2 returns a vector of current inputsto the
unknown blocks. Ordering of the elements vector can
be determined by the value of the ID parameter for
the unknown block. VisSim sortsin sequential order,
from low to high. (Thisisuseful for initial condition
setting.)

Returns the current version of VisSim.

Getsinformation related to the global state of VisSim.
The information provided is a copy of the current
internal state; modifying it will not change VisSim’'s
state. Arg2 should contain a pointer to aSIM_INFO
structure, defined in VSUSER.H, which will befilled
in by the vissimRequest() function. Arg3 should
contain the size of this structure (sizeof (SIM_INFO))
to allow for version compatibility checking.

Sets diagram unknowns based on the vector passed as
arg2. Ordering of the elements vector can be
determined by the value of the ID parameter for the
unknown block. VisSim sortsin sequential order,
from low to high.

269



Appendix A Customizing VisSim

Building a custom implicit solver

Most languages have a Project Build facility that automates the process of building a
.DLL file. The following procedure guides you through the process of building a
project in general terms. Refer to the documentation for the application language
you're using for specific instructions.

» Tobuild acustom implicit solver

1. Invokethe Compiler environment.

2. Add dl the source fileslisted in on page 268 to the project or make file.
3

Under project options, specify the project type as a Windows Dynamic Link
Library (.DLL).

4. Under compiler preprocessor options, specify \VISSIM30\V SDK as the include
directory.

5. Build the project.

Using the constraint block with a custom implicit solver

To indicate the number that VisSim uses to sort the block when presented as a vector
in auser-written solver, enter it in the ID box of the Constraint Properties dialog

box. VisSim does not require the ID to be unique or contiguous; it sortsthem in
sequential order. The default isO.

Setup constraint block

Setup constraint block

oE

0K I LCancel | Help |

Creating custom global optimizers

270

Y ou can write aglobal optimizer asa.DLL file. VisSim recognizes a user-written
global optimizer when it isnamed VOPT.DLL and resides in your current directory.
VOPT.DLL should also contain an exported function in the following format:

int FAR EXPORT USER_OPT_FUNC(DOUBLE *unknownVec, int
unknownCount, int costCount, int globalConstraintCount) ;

Optimize has a prototype declared in VSUSER.H.

Before you initiate global optimization, make sure VOPT.DLL isin your current
directory and the User Solver parameter in the dialog box for the Simulate menu's
Optimization Setup command is activated.



Appendix A Customizing VisSim

Source files for building a custom global optimizer

The following table lists the source files for building aglobal optimizer. Thesefiles
areinstalled in \VISSIM30\VSOLVER and \VISSIM30\VSDK.

Sourcefile Description

VOPT.C A C sourcefile for asample global optimizer. The heart of the
optimizer is the vissimRequest() function that you call to obtain
the inputs to the cost blocks and to supply values to the outputs
of the parameterunknown blocks. Using vissimRequest(), you
can write awide variety of optimization algorithms. For more
information, see the description below.

VOPT.DEF A definition file that contains linker commandsto build a.DLL
file from object code.

VOPT.MAK A makefile that contains rules for automatically building a.DLL
file.

VSUSER.H A C language header file that contains function prototypes and
command definitions for the vissmReguest() call.

IMPSIM.LIB VisSim import library that describes the address of
vissimRequest().

Using vissimRequest() in a custom global optimizer

The vissimReqguest() function is a genera -purpose function for making requeststo
VisSim. A user-written global optimizer uses vissimRequest() to read and write
global optimization information in a block diagram. The general format of
vissmRequest() is:

long FAR vissimRequest (long req, long arg2, long arg3 )

Thefirst argument (long req) is a message code describing the action for VisSim to
take. The list of message codes is defined in the file named VSUSER.H, which is
installed in \VISSIM30\V SOLV ER. The message codes that pertain to writing a
global optimizer are asfollows:

M essage code Description

VR_GET_GLOBAL_COST Writes avector of current cost block input
values into a vector pointed at by arg2.

VR_GET_GLOBAL_CONSTRAINTS Writes avector of current globalConstraint
block input values into a vector pointed at by
arg2.

VR_GET_GLOBAL_CONSTRAINT_BOUNDS  \Writes avector of globalConstraint block
low bounds into a vector pointed at by arg2, and
avector of globalconstraint block high
bounds into a vector pointed at by arg3.

21



Appendix A Customizing VisSim

M essage code

Description

VR_GET_GLOBAL_OPT_INFO

VR_GET_GLOBAL_UNKNOWNS

VR_GET_GLOBAL_UNKNOWNS INPUT

VR_GET_GLOBAL_UNKNOWN_BOUNDS

VR_GET_VERSION

VR_GET_VISSIM_STATE

VR_RESET_XFERS
VR_RUN_SIMULATION

VR_SET_GLOBAL_UNKNOWNS

272

Getsinformation related to the global
optimization settings in the dialog box for the
Optimization Setup command. The information
provided is a copy of the current optimization
state; modifying it will not change VisSim's
state. Arg2 should contain a pointer to an
OPT_INFO structure, defined in VSUSER.H,
which will befilled in by the vissimRequest()
call. Arg3 should contain the size of this
structure (sizeof (OPT_INFO)) to allow for
version compatibility checking.

Writes a vector of current parameterunknown
block output valuesinto the vector pointed at by
arg2. Ordering of the elements vector can be
determined by the value of the ID parameter for
the parameterunknown block. VisSim sortsin
sequential order, from low to high.

Writes a vector of current parameterunknown
block input values into the vector pointed at by
arg2. Ordering of the elements vector can be
determined by the value of the ID parameter for
the parameterunknown block. VisSim sortsin
sequential order, from low to high.

Writes a vector of parameterunknown block
low bounds into a vector pointed at by arg2, and
avector of parameterunknown block high
bounds into a vector pointed at by arg3.

Returns the current version of VisSim.

Gets information related to the global state of
VisSim. The information provided is a copy of
the current internal state; modifying it will not
change VisSim's state. Arg2 should contain a
pointer to a SIM_INFO structure, defined in
VSUSER.H, which will befilled in by the

viss mRequest() function. Arg3 should contain
the size of this structure (sizeof(SIM_INFO)) to
allow for version compatibility checking.

For interna use only.
Starts asimulation run.

Sets current parameterunknown block output
vaues from arg2.



Appendix A Customizing VisSim

Building a custom global optimizer

Most languages have a Project Build facility that automates the process of building a
.DLL file. The following procedure guides you through the process of building a
project in general terms. Refer to the documentation for the application language
you're using for specific instructions.

» Tobuild acustom global optimizer
Invoke the Compiler environment.

1
2. Adddl the sourcefileslisted in on page 271 to the project or makefile.
3. Under project options, specify the project type as a Windows DLL.
4. Under compiler options, specify the following:

e Memory Model to be Large.

e  Windows Prolog/Epilog to be Real Mode far Functions.
5. Build the project.

273



Appendix B

Extending the Block Set

This appendix covers the following information:

The big picture

Writing DLLs

Building DLLs

Calling conventions

Simulation level functions

Block level functions

Exported functions

Debugging DLLs

Binding DLLsto userFunction blocks

Adding user-written blocks to the Blocks menu

VisSim provides an Application Programming Interface (API) that allows you to
extend the standard block set by creating Dynamic Link Library (DLL) filesand
binding them to userFunction blocks. A DLL fileislike aregular executablefile
with the exception that it cannot start execution on itsown. A DLL function can be
called just like functions that are part of anormal executablefile.

The following diagram shows how files are processed to create VisSim DLLs. This
diagram steps you through the process of creating aDLL from a C sourcefile;
however, you can also create DLLsin Fortran and Pascal.

275



Appendix B Extending the Block Set

276

VSUSER.H SAMPLDLL.C

Dialog Editor

VISSIM32.LIB | [SAMPLDLL.OB] |SAMPLDLL.RES|

Optional for custom dialog box

SAMPLDLL.DLL

The main stepsin the creation of VisSim DLLs are:

1. Createor edit an existing C, Fortran, or Pascal sourcefile.

2. Createaproject DLL for your compiler.

3. Execute a build operation, which compiles your source code into an object file.
4. Link the object filewith VISSIM32.LIB to produce aDLL.

Criteria for writing DLLs

Y ou can write DLLsin any language, provided the language has the following
capabilities:

e  64-bit floating point array parameters
e Pointersto 16-hit integers

e stdcall caling conventions (default for Microsoft Fortran and Delphi
Pascal)

Example DLLswritten in C, Fortran, and Pascal are distributed with VisSim and
reside in subdirectories under the \VISSIM30\V SDK directory.

Building a DLL

Most languages have a Project Build facility that automates that process of building
aDLL. Thefollowing procedure guides you through the process of building a
project in general terms. Refer to the documentation for the application language
you're using for specific instructions.

1. Invokethe Compiler environment.



Appendix B Extending the Block Set

2. Add thefollowing files to the project file:
e All the sourcefiles
e All theresourcefiles
e VISSIM32.LIB

3. Under project options, specify the project type as a Windows Dynamic Link
Library (.DLL).

4. Under compiler preprocessor options, specify \VISSIM30\V SDK as the include
directory.

5. Build the project.

How VisSim talks to a DLL

There are three types of functions used for communication between VisSim and your
DLL:

e Simulation level functions
e Block level functions
e VisSim exported functions

Simulation level functions and block level functions are DLL functions VisSim can
cal viaauserFunction block. Simulation level functions are called once per
simulation-wide event. Block level functions, on the other hand, are called once for
each userFunction block. If you have no userFunction blocks, no callsare
made; if you have 100 userFunction blocks, they are called 100 times.

Exported functions are VisSim functions that you can call fromaDLL. These
functions allow a DLL to request information from VisSim, as well asinstruct
VisSim to perform specific actions.

Calling conventions

The following information pertains to the DL L functions described in the next
severa sections:

e Functions are shown in C syntax. For Fortran and Pascal syntax, look in the
sample source files in subdirectories under \VISSIM30\V SDK.

e All arguments are pointers to data types. Since Fortran passes variables by
reference, anormally declared Fortran variable can be passed as an argument.

277



Appendix B Extending the Block Set

278

Simulation level functions
There are two simulation level functions:

e vsminit(). Called a VisSim start-up. Y ou use this function to insert one or more
blocks in the Blocks menu.

e vsmEvent(). Called at simulation-wide events, such as simulation start, end of
time step, and simulation end.
Initialization function - vsminit()

ThisDLL function is called by VisSim to allow the DLL to perform initialization,
particularly to insert userFunction blocks into the Blocks menu.

EXPORT32 int EXPORT PASCAL vsmInit ()

To have vsminit() be called when VisSim starts up, you must tell VisSim the path to
your DLL, as described on page 288.
System-wide event function - vsmEvent()

Thisfunction is called by VisSim to notify the DLL of interesting simulation-wide
events.

LPSTR PASCAL vsmEvent (int msg, int wParam, long *arg) ;

M essage Function

VSE_POST_SIM_END VisSim has stopped, either from user stop or time
expiration.

VSE_POST_SIM_START VisSim hasinitialized all blocks and is about to
start.

VSE_PRE_SIM_START VisSimis about to start asimulation but has not
initialized any blocks.

VSE_SIM_RESTART VisSim isrestarting due to auto-restart.

VSE_TIME_STEP Simulation has completed atime step.

WM_COMMNOTIFY Comm port datais ready.

WM_DESTROY VisSim is exiting.

WM_VSM_WINDOW_HANDLE Handleto VisSim main window.
arg: Window handle



Appendix B Extending the Block Set

Block level functions

In order to interface smoothly with VisSim, VisSim can call seven Pascal-style
functions that share the base DLL function name and have an event code suffix
corresponding to aVisSim event. Y ou should supply afunction for each event that
you want your DLL code to handle. The additional functions are described below:

Function name Purpose When it's called

user Block() Block time step Each simulation time step

user BlockEvent() Block event handler On occurrence of ablock related
event

userBlock PA() Block parameter allocation Block creation

user Block PC() Block parameter change Right button click

userBlock PI() Block parameter initialization ~ Immediately after userBlockPA()

userBlock SE() Block simulation end Simulation end time

userBlock SS() Block simulation start Simulation start time

The term userBlock is a placeholder for your DLL base function name. Y ou specify
the DLL base function name when you bind the DLL to a userFunction block.
For more information, see page 287.

Y ou can have any number of user-written blocksin asingle DLL file.

All definitions are kept in the VSUSER.H file. Thisfile should be included in every
user DLL.

Time step function - userBlock()

The userBlock() function is called at each time step to calculate simulation values. It
istheonly function aDLL isrequired to export.

The userBlock() function may be called an arbitrary number of times during atime
step interval. The number of calls depends on the integration method and whether
the VBF_HAS STATE flag isactive for ablock. Note that the outputs are not
preserved from call to call. Therefore this function must write to its outputs at each
call.

void PASCAL userBlock(double param[], double inSig[], double
outSigl])

279



Appendix B Extending the Block Set

TheinSig array isfilled by VisSim with the values presented to the input connector
tabs on the userFunction block. Store the result valuesin the outSig array. VisSim
presents the outSig values to the corresponding output connector tabs on the
userFunction block.

Event handler function - userBlockEvent()

The userBlockEvent() function is called at block events, such as block repaint, end
of time step, and simulation end.

LPSTR PASCAL userBlockEvent (HWND h, int msg, WPARAM wp,
LPARAM 1p)

This function lets you save and restore mixed data types. Note that the arguments are
the same as Windows or Windows NT event functions.

VisSim calls your function with the following messages:

M essage Description
WM_VSM_ADD_CONNECTOR Signals a user-request for a connector to be

added to a block.

wp: Current count

Ip: 1if input

0if output

WM_VSM_BLOCK_INFO Used for writing a custom optimizer.
WM_VSM_BLOCK_PLACED Signalsthat a block has been placed in the

diagram.

Ip: Block handle
WM_VSM_BLOCK_SETUP Thisevent is generated only if thereis no

userBlockPC() function defined for the block.
This event is generated when you click the right
mouse button on the block.

wp: Internal ID

Ip: Block handle

WM_VSM_CHECKPOINT_STATE Signal's a user-request to checkpoint system
states; that is, set the checkpoint buffer to the
current state value.

WM_VSM_CONNECTOR_NAME Returns string of connector label name. Null if
no label is desired.
wp: Port number (negativeif output)
Ip: Block handle

280



Appendix B Extending the Block Set

M essage

Description

WM_VSM_CREATE

WM_VSM_DEL_CONNECTOR

WM_VSM_DESTROY

WM_VSM_FILE_CLOSE
WM_VSM_FILE_READ

WM_VSM_GET_BLOCK_BITMAP
WM_VSM_GET_BLOCK_NAME

WM_VSM_GET_PARAM_DESC

Is called when a user block is created. Y ou can
return flags to customize block treatment. (For
more information, see “Return flags for
WM_VSM_CREATE,” below.)
wp: Oif create from file

1if create from menu

2 if create from clipboard
Ip: Block handle

Signals a user-request for a connector to be
deleted from ablock.
wp: Current count
Ip: 1if input
0if output

Is called when user block is destroyed.
Ip: Block handle

Reserved.

Signalsthat block and all its parameters have
been read in from file.
Ip: Block handle

Reserved.

Provides a block with a custom name. Return a
null terminated string that contains the new
name. The name may contain newline characters.

Provides a data descriptor for saving and
restoring data. Return atext string that describes
your data by following these guidelines:

Format character Data Type

2-byteinteger
| 4-byte integer
f 4-byte float
F 8-byte float
c Single-byte character

All of the above format characters can take an
optional count suffix, which is enclosed in square
brackets. For example to save two 8-byte floats
and a 32-character string in C, use the following
string notation:

“F[2] c[32]"

In Fortran, the string notation is:

‘F[2] c[32]’ ¢

281



Appendix B Extending the Block Set

282

M essage Description

WM_VSM_INFO Reserved.

WM_VSM_RETAIN_STATE_ Restarts with retained states.
RESTART Ip: Block handle

WM_VSM_SIM_RESTART

WM_VSM_SNAP STATE

WM_VSM_STOP_SIM

WM_VSM_SUPPRESS WARN _
UNCONNECT

Return flags for WM_VSM_CREATE
Flag

Signals restart due to continue or single step.
Ip: Block handle

Signals a user-request to snap system states; that
is, set the initial condition to the current state
value.

Signalsthat VisSim has stopped, either by user
or time expiration.

wp: 1if single step

Ip:  Pointer to parameter vector

Checks to suppress the unconnected input
warning message. Return 1 if suppression is
desired.

wp: Port number (negative if output)

Ip: Block handle

Description

VBF_HAS STATE

VBF_USE_SIGNAL_DESCRIPTORS

VBF_ALLOC_VEC OUTPUT

VBF_EXECUTE_ALWAYS

VBF_ALLOW_VEC_CHAMELIONS

VBF_STRAIGHT_WIRES

VBF_MENU_ONLY

TellsVisSim that block has state and can break
an algebraic loop. VisSim calls this block once,
before all other blocks, to present an initial
condition; then the block is called during
normal diagram execution.

Block input and output vector are vector of type
SIGNAL (not double).

Causes VisSim to automatically allocate output
matrix for matrix input blocks.

Causes VisSim to execute the block regardless
of graph connectivity.

Causes connectors to accept scalar or vector
connections.

Causes wires to be drawn as straight lines rather
than auto-routing.

Thisisamenu item only and no block is
created; however, the user BlockEvent()
function is called. Thisflag is useful for menu
select to dialog.



Appendix B Extending the Block Set

Parameter allocation function - userBlockPA()

The userBlockPA() function is called when you first enter aDLL file/function pair in
the dialog box for the userFunction block, or when a diagram isfirst read into
VisSim. Note: Thiscall isno longer required if block menu insertion is used.

long PASCAL userBlockPA (short *ppCount)

This function returns the parameter storage requirements, in bytes, for the
userFunction block, and the number of prompted parameters. If you want VisSim
to prompt for parameter values, set ppCount to the desired number. The maximum
value for ppCount is 12. Y ou need to alocate eight bytes for each prompted
parameter. Y ou can request additional storage for afunction’s private use. This

additional storage can be accessed as array elements of the parameter vector after the
first ppCount elements.

When this function is not supplied, no parameter storage is alocated.

Parameter change function - userBlockPC()

The userBlockPC() function is called when you click the right mouse over the
userFunction block.

char * PASCAL userBlockPC (double * param)

This function lets you change block parameters for the userFunction block. If you
want to create a dialog box to browse and set parameter values, you can do so and
return aNULL pointer. If you want VisSim to browse and set parameter values for
you, you should return apointer to aNULL terminated string. The string should
contain semicolons to separate each parameter prompt. Y ou may have up to 12
parameters using this default method of parameter setting.

Parameter initialization function - userBlockPI()

The userBlockPI() function is called at block creation time, either from the menu or
afile, for parameter initialization. It lets you provide initial values for parameters.

void PASCAL userBlockPI (double * param)

Thisfunction is caled immediately after the parameter allocation function
user BlockPA ().

Simulation end function - userBlockSE()()

The userBlockSE() function is called just after a simulation ends to perform post
simulation processing.

void PASCAL userBlockSE (double param[], long * runCount)

Simulation start function - userBlockSS()

The userBlockSS() function is called just prior to the start of asimulation to perform
initialization processing necessary for a simulation run.

void PASCAL userBlockSS (double param[], long * runCount)

283



Appendix B Extending the Block Set

284

Exported functions

The seven exported functions are described below.

General information request - vissimRequest()
The vissimRequest() function provides a general, extensible request mechanism for

obtaining information from VisSim.

EXPORT32 long vissimRequest (long req, arg2, arg3);

Thefirst argument (long req) is a message code describing the action for VisSim to
take. The message codes that pertain to writing a custom block are as follows:

M essage

Description

VR _DISABLE_BLOCK_TYPE

VR_EXECUTE

VR_GET_BLOCK_PARAMS

VR_GET_CLEAR BLOCK_ERR

VR_GET_CONSTRAINTS

VR_GET_GLOBAL_CONSTRAINT
BOUNDS

VR_GET_GLOBAL_CONSTRAINTS

VR_GET_GLOBAL COST

VR_GET_GLOBAL_OPT_INFO

VR_GET_GLOBAL_UNKNOWN_
BOUNDS

VR_GET_GLOBAL_UNKNOWNS

VR_GET_GLOBAL_UNKNOWNS_
INPUT

Removes block matching name string from
Blocks menu.
argl: LPSTR name string

Runs diagram but doesn’t change time (no
integration).

Returns block parameter pointer.
argl: Block handle

Clearsred error state on block. Uses currently
executing block if block handlein arglisnull.
argl: Block handle (opt.)

Gets constraint values
argl: Double* constraint

Gets global constraint bounds.
argl: Double* upper bound
arg2: Double* lower bound

Gets global constraints.
argl: Double*

Gets global cost.
argl: Double* global cost

Gets global optimization settings.
argl: OPT_INFO

Gets global unknown bounds.
argl: Double* upper bound
arg2: Double* lower bound

Gets global unknowns.
argl: Double*

Gets global unknown input.
argl: Double* global unknown initial
condition



Appendix B Extending the Block Set

M essage

Description

VR_GET_SOLVER_INFO

VR_GET_STARTUP DIR
VR_GET_SUB_VERSION
VR_GET_UNKNOWNS

VR_GET_UNKNOWNS INPUT

VR_GET_VERSION

VR_GET_VISSIM_STATE

VR_GET_WINDOW_HANDLE

VR_REALLOC_USER PARAM

VR_RESET_XFERS

VR_SET_BLOCK_CONNECTOR _
COUNT

VR_SET_BLOCK_MENU

VR_SET_CONNECTOR_CHAR

VR_SET_CONNECTOR_LABEL
VR_SET_GLOBAL_UNKNOWNS

VR_SET_UNKNOWNS

VR_SNAP STATES

Gets settings from Implicit Solver tab in the
Simulation Properties dialog box.
argl: Pointer to Implicit Solver

Returns VisSim directory string.
Returns version letter suffix.

Gets unknown values.
argl: Double* unknowns

Get unknown inputs.
argl: Double*

Returns major version in high byte and minor
version in low byte.
argl: SIM_INFO pointer

Gets current simulation state and copy to
pointer in argl.

Returns VisSim main window handle. Useful
for model dialog creation.

Reallocates parameter vector and returns newly
reallocated pointer.

argl: Block handle

arg2: New parameter size

For internal use only.

Sets the connector count on the block.
argl: Block handle
arg2: input# = upper word

output # = lower word

Adds user-defined block to Blocks menu.
argl: Pointer toinitialized
USER_MENU_ITEM vector

Sets indicator character on block connector.
argl: Character to set

For internal use only.

Sets global unknowns from supplied vector.
argl: Double* globa unknown

Sets unknown values from user-supplied
vector.
argl: Double* unknown

Causes VisSim to use current integrator/del ay
state asinitial condition.

285



Appendix B Extending the Block Set

286

Get current simulation time - getSimTime()

This function stores the current simulation time in the double precision float variable
pointed to by smTime.

EXPORT32 void PASCAL getSimTime ( DOUBLE *simTime) ;

Get current simulation time step - getSimTimeStep()

This function stores the current simulation time step in the double precision float

variable pointed to by simTimeStep.

EXPORT32 void PASCAL EXPORT getSimTimeStep ( DOUBLE
*gsimTimeStep) ;

Print debug message - debMsg ()

This function prints a dialog box containing a debugging message. Because you can't
perform normal screen I/0O under Windows or Windows NT, VisSim provides
debMsg to display information pertaining to the variables for your userFunction
block’sfunction. The format isidentical to the C printf() function. Since this
function alows an arbitrary number of arguments, it must be called using the C
language convention. To call it from Fortran or Turbo Pascal, for example, you must
declareit as C language code. VisSim displays the output string in a standard dialog
box that contains a Retry, Ignore, and Abort button. Press Retry or Ignoreto
continue the simulation. Press Abort to cancel the simulation.

EXPORT32 int CDECL EXPORT debMsg P ((char LPSTR fmt , ... ));

Request simulation end - stopSimulation()

This function requests that VisSim stop a simulation.

EXPORT32 void PASCAL EXPORT stopSimulation( int stopval) ;

If stopVal is 1, the current simulation run is stopped. If you have activated the Auto
Restart parameter under the Range tab in dialog box for the Simulate > Simulation
Properties command, VisSim starts the next simulation run. If stopVal is2, all
simulation runs are stopped.

Flag error - setBlockErr()

This function requests that VisSim flag the currently executing block in red. All
nested blocks will be flagged in red aswell. To clear aflagged block, click the right
mouse button on the block.

EXPORT32 void PASCAL EXPORT setBlockErr() ;

Add menu item - setUserBlockMenu()

This function adds a block (or menu item) to the VisSim menus.

EXPORT32 void EXPORT setUserBlockMenu P((USER_MENU_ITEM *));



Appendix B Extending the Block Set

This functions recognizes one argument, which is a pointer to an array of structures.
The structures define the menu name, DLL name, number of inputs, number of
outputs, number of parameters, and help string. The format of the structureis as
follows:

typedef struct ({

}

char * menuName;
char * funcName;
int inputCount;
int outputCount;
int paramCount;
char * helpText;

USER_MENU_ITEM;

Y ou need one structure for every block (or menu item).

In addition, the last element in the array of structuresthat is passed back in must be
{0}

Debugging hints

The following guidelines will make it easier to debug your DLLSs:

MSVC lets you set abreakpoint in your DLL before running VisSim.

Set VISSIM32.EXE asthe calling program by choosing Build > Settings >
Debug. This starts VisSim automatically when you press F5 (or choose Debug >
Go).

Use conditional breakpoints to get control near the problem area.
Single-step with values in watch window to find problems.

If your program hangs, press CTRL+ALT+PRTSCRN (or choose Debug > Break) to
return control to the debugger. This works best under Windows 95 and
Windows NT.

On Debug > Break or a General Protection Fault, use View > Stack Trace to
find the location of the offending instruction.

Floating point errors, if continued, often result in General Protection Fault that
point to source line of floating point error.

Binding a DLL to a userFunction block

When you bind aDLL to auserFunction block, VisSim calls the DLL each time the
block is executed.

» Tobind aDLL toauserFunction

1.

Insert auserFunction block in your diagram.

2. Choose Edit > Block Properties.

287



Appendix B Extending the Block Set

3,
4,

5.

Point to the userFunction block and click the mouse.
Do the following:

e IntheDLL File Name box, enter the name of the DLL file containing the
user function.

¢ |Inthe Base Function Name box, enter the base name of the function.

Click on the OK button, or press ENTER.

Adding a user-written block to the Blocks menu

Thisalows VisSim to invoke the DLL at VisSim start-up, and allowsthe DLL to
insert blocks into the Block menu by calling setUserBlockMenu().

>

1
2.
3

288

To add a user-written block to the Blocks menu
In VisSim, choose Edit > Preferences.

Click on the Addons tab.

Double-click onthe éllipsis (...) and typein the path to the DLL function, or
click on the ... button to locate the DLL function.

Click on the OK button, or press ENTER.



Appendix C

Toolbox and Components Libraries

Toolhoxes

VisSim provides a wide range of toolbox functions and diagram components to
further enhance your modeling and simulation capabilities. Because they arein
VSM fileformat, you can easily incorporate them into your diagrams using the File
menu’'s Add command or the embed block.

The toolbox libraries supplied with VisSim include functions for controls, electro-
mechanical design, Padé approximations, and signal generation. VisSim also
provides atoolbox library of miscellaneous functions (called Tools).

Controls toolbox library (\ISSIM30\TOOLBOX\CONTROLS)

Toolbox function

Description

DERIV_A.VSM
DERIV_D.VSM
DIFFR.VSM
HYST_CTL.VSM
HYSTER.VSM
LAG.VSM
LEAD.VSM

P CTL.VSM
Pl_CTL.VSM
PID_CTL.VSM

Continuous derivative model

Discrete derivative function

Discrete difference model

Hysteresis controller

Hysteresis function

General first order unity gain all pole low pass filter
General first order lead unity gain compensator
Proportional (P) controller

Proportional Integral (Pl) controller

Proportional Integral Derivative (PID) controller

289



Appendix G Toolbox and Component Libraries

Toolbox function Description

RATE_LIM.VSM Rate limited controller

RFB_CTL.VSM Rate feedback controller

TF1_CONT.VSM Continuous first order transfer function

TF1_DISC.VSM Discretefirst order transfer function

TF2_CONT.VSM Continuous second order transfer function

TF2_DISC.VSM Discrete second order transfer function

TRIM_INT.VSM Trimmed integrator - findsinitial state for zero
derivative

ZINTBR.VSM Digital integrator (backward rectangular)

ZINTFR.VSM Digital integrator (forward rectangular)

ZINTTR.VSM Digital integrator (trapezoidal)

Electro-mechanical toolbox library (\ISSIM30\TOOLBOX\ELECHMECH)

Toolbox Function Description

A2D.VSM Analog-to-digital converter model with settable dT and
bit length

ACDQ MOT.VSM Three-phase AC motor model utilizing DQ coordinate
transformation

D2A.VSM Digital-to-analog converter model with settable dT and
bit length

DC MOT.VSM Armature controlled DC motor

ENCODER.VSM Encoder model

MUX4.VSM Four-channel multiplexer

PWM.VSM Pulse wave modulation model

Padé toolbox library (\VISSIM30\TOOLBOX\PADE)

Toolbox Function Description

PADE1LVSM First order Padé approximation to time delay
PADE2.VSM Second order Padé approximation to time delay
PADE3.VSM Third order Padé approximation to time delay
PADE4.VSM Fourth order Padé approximation to time delay

290



Appendix G Toolbox and Components Libraries

Signal generation toolbox library (\VISSIM30\TOOLBOX\SIGGEN)

Toolbox Function

Description

3_PHASE.VSM
CAL_TIMEVSM
DT.VSM
SAWTOOTH.VSM
SQR_WAVE.VSM
TRIANGLE.VSM

Three-phase sinusoidal signal generator
Simulation time in day, hour, minutes
Simulation time in seconds

Generates a sawtooth wave form
Generates a square wave form

Generates atriangular wave form

Tools toolbox library (\VISSIM30\TOOLBOX\TOOLS)

Toolbox Function

Description

AVG_VAL.VSM
COUNTER.VSM
MAG_PHAS.VSM

MAX_VAL.VSM

MIN_VAL.VSM

PERIOD.VSM
PH_DIFF.VSM
RMS.VSM
SWEEP.VSM
VEC_ANLY.VSM

Average (mean) value estimator for periodic signals
Pulse counter

Computes the magnitude ratio and phase margin between
two input signals

Detects the high peak value every cycle of aperiodic
wave form

Detects the peak low value every cycle of aperiodic
wave form

Wavelength estimator for a periodic signal

Phase difference estimator

Computes the root mean square (RMS) value of asignal
Provides parameter sweep settings

Amplitude - phase vector display

291



Appendix G Toolbox and Component Libraries

Components

The components libraries supplied with Professiona VisSim include DSP,
dynamical, electro-mechanical, electric, hydraulic, process control, thermal, and
turbine components.

DSP library (\ISSIM30\COMPNENT\DSP)

Component Description

CONVOLXI.VSM Analytical and numerical solutions for an impulse
response system

KFILT.VSM Filter for estimating particle coordinates and vel ocity
components

WAVELETSVSM Two-parameter wavelet generation

Dynamical system library (\VISSIM30\COMPNENT\DYNSYS)

Component Description

ANTENNA.VSM Position control of flimsy antenna

REEL.VSM Control of wire speed on a motor-controlled take-up reel
ROBEAM3.VSM Reduced-order steady-state beam model

Electro-mechanical library (\VISSIM30\COMPNENT\ELECHMECH)

Component Description

2DCMOTS.VSM Two motors connected by aflexible belt

CRANE.VSM Movement of a crane payload

HOIST.VSM One mass nonlinear hoistway

STEPPER.VSM Stepper motor for Variable Reluctance or Permanent
Magnet types

Electrical library (\ISSIM30\COMPNENT\ELECTRIC)
Component Description

POWERSUP.VSM Two-diode, full-wave rectified DC power supply

292



Appendix G Toolbox and Components Libraries

Hydraulic libraries (\VISSIM30\COMPNENT\HYDRAULIC...)

\ACTUATOR library

Component Description
HYDMOTOR.VSM Hydraulic motor
TWNCHMAC.VSM Double-sided actuator
\INCLUDE library
Component Description
GENDEFS.VSM General definitions for hydraulic library

\MECHLOAD library

Component Description
LINEAR.VSM Linear mechanical load
ROTATNAL.VSM Rotational mechanical load

\MINORLOS library

Component Description

BEND.VSM Fluid flow through a pipe bend

SUDCONTR.VSM Sudden contraction of fluid due to an exit from alarge
chamber into a pipe

SUDEXPNS.VSM Sudden expansion of fluid due to exit into alarge
chamber

\MISC library

Component Description

MASSWLIM.VSM Mass with limits

VOLUME.VSM Capacitance volume effects

\ORIFICE library

Component Description
ORIFICE.VSM Flow through an orifice
\PIPE library
Component Description
CONDUIT.VSM Pressure gradient evaluation for laminar and turbulent

flow through conduits

293



Appendix G Toolbox and Component Libraries

\POWRLOSS library
Component

Description

POWRLOSS.VSM

\PUMPS library

Power loss and temperaturerise in fluid

Component Description
POSDSPMP.VSM Positive displacement pump
PRSCMPMP.VSM Pressure compensated pump.

\SPLTMERG library

Component Description

10RFSPLT.VSM Split one fluid stream into two (orifice at the exit on one
of the outlet ports)

3BWAYSPLT.VSM Splits one fluid stream into three

MERGE.VSM Merges two fluid streams into one

MERGE3LN.VSM Merges three fluid streams into one and includes an
orifice on the exit

MERGEALG.VSM Joins two streams algebraically without introducing a

MRGALG3I.VSM

pressure state

Joins three streams algebraically without introducing a
pressure state

PLNMMERG.VSM Merges two fluid streamsinto one and the downstream
boundary condition is the flow rate

Component Description

PLNMRG3L.VSM Merges three fluid streams into one and the downstream
boundary condition is the flow rate

PRSTRAN.VSM Pressure transients in hydraulic conduits

SPLTWORF.VSM Splits one fluid stream into two (orifice at the exit of each

\VALVES library

outlet port)

Component Description
REGLVALV.VSM Pressure regulating valve
RELFVALV.VSM Pressure relief valve

294



Appendix G Toolbox and Components Libraries

Process control library (\VISSIM30\COMPNENT\PROCESS)

Component Description

BEER.VSM Beer brewing model

CSTRVSM Simple continuous stirred tank reactor model
DISTIL.VSM Binary distillation column

NISOTH.VSM Non-isothermal continuous stirred tank reactor model

Thermal control library (\ISSIM30\COMPNENT\THERMAL)
Component Description
HEATEXCH.VSM Heat exchanger model

Turhine library (\ISSIM30\COMPNENT\TURBINE)

Component Description
GT2VSM Twin spool gas turbine model

295



Appendix D

Sample Block Diagrams

VisSim comes with numerous block diagrams that cover a broad spectrum of
applications and illustrate many of VisSim’s fundamental design and smulation
features. The sample block diagrams reside in the subdirectories under
\VISSIM30\APPEXAMPL. This appendix describes the sample block diagrams

provided by VisSim.
Thissubdirectory

Containsthistype of diagram

\AEROSPAC
\ANIMATE
\BIOPHY'S
\BUSINESS
\CHEMENG
\CTRL_DES
\DYN_SYS
\ELECTRO
\ENVIRON
\FIXPTDSP
\MMI
\MOTION
\OPTIMIZE

\POWER

Aerospace diagrams

Animation diagrams
Biophysical diagrams

Business diagrams

Chemical engineering diagrams
Control design diagrams
Dynamic system diagrams
Electro-mechanical diagrams
Environmental diagrams

Fixed Point DSP diagrams
Man-machine interface diagrams
Moation control diagrams
Optimization diagrams

Power system and component diagrams

297



Appendix D Sample Block Diagrams

Thissubdirectory Containsthistype of diagram
\PROCESS Process control diagrams
\SIG_PROC Signal processing diagrams
\STATCHRT Logic diagrams and state machines

Aerospace block diagrams (\wviSSIM30\PPEXAMPL\AEROSPAC)

Block diagram Description

6DOF.VSM Six degree of freedom simulation

Animation block diagrams (vISSIM30\APPEXAMPL\ANIMATE)

Block diagram Description

2LINK.VSM Loose model of atwo-link pendulum

PHYSBE.VSM Physiological Simulation Benchmark Experiment that shows
the bloodflow in the human body

ROCKET.VSM Simulation of the trgjectory of aballistic missile

Biophysical block diagrams (wiSSIM30\APPEXAMPL\BIOPHYS)

Block diagram Description
BIOREACT.VSM Bio-reactor showing cell culture growth in a nutrient solution
PHY SBE.VSM Physiological Simulation Benchmark Experiment that shows

the bloodflow in the human body

Business block diagrams (\viISSIM30\APPEXAMPL\BUSINESS)

Block diagram Description
CASHFLOW.VSM Track cash flow within a manufacturing organization
WAGECHAO.VSM Affect of changing interest rate on employment

298



Appendix D Sample Block Diagrams

Block diagram

Chemical engineering block diagrams (viSSIM30\APPEXAMPL\CHEMENG)

Description

AMMONAB.VSM

BATCHD.VSM

BATEX.VSM
BATSEQ.VSM

BEAD.VSM
BSTILL.VSM
CASTOR.VSM
CHAOS.VSM
CONSTILL.VSM
CSTRVSM

CSTRCOM.VSM
DISRE.VSM

DISRET.VSM

DRY.VSM
EQEX.VSM
EXMULTIL.VSM
GPJIF.VSM
HEATEX.VSM
HMT.VSM
HOPFBIF.VSM
LORENZ.VSM
MCSTILL.VSM

Steady state absorption column where ammoniais recovered
from an ammonia-air gas mixture by absorption into water,
using a counter-current-packed column

nth order homogeneous liquid phase reaction in a batch tank
reactor

Single solution batch extraction

Complex batch reaction sequence (can be used to study
various reaction kinetics of interest simply by varying the rate
constants)

Diffusion and reaction in a spherical bead

Binary batch distillation column

Batch decomposition of acetylated castor oil to drying oil
Chaotic oscillatory behavior

Continuous binary distillation column

System of three continuous stirred tank reactors with first
order isothermal reaction

Isothermal CSTR with complex reaction

Dynamic behavior of an non-ideal isothermal tubular reactor
to predict the variation of concentration with respect to both
axial distance along the reactor and flow time

Dispersion model of DISRE.VSM is extended for non-
isothermal reactions to include the dispersion of heat from a
first order reaction

Drying of solids by diffusion

Simple equilibrium stage extractor

Continuous equilibrium multistage extractor
Solution of partial differential equations

Shell and tube heat exchanger

Semi-batch manufacture of hexamethylenetriamine.
Hopf bifurcation

Random differential equation behavior

Continuous multicomponent distillation column

299



Appendix D Sample Block Diagrams

Block diagram

Description

NOSTR.VSM
ROD.VSM
TANKBLD.VSM
TANKHYD.VSM
THERM.VSM

TUBE.VSM
TUBEMIX.VSM
TUBTANK.VSM

TWOTANK.VSM

Non-ideal stirred tank reactor
Radiation from metal rod
Liquid stream blending problem
Two interacting tank reservoirs

First order, exothermic reaction in a continuous stirred-tank
reactor, equipped with jacket cooling

Tubular reactor, steady state design for an nth order reaction
Non-ideal tube-tank mixing system

Comparison of steady state conversions for both continuous
tank and tubular reactors for nth order reaction kinetics

Two tank level control, where the level control of tank 2 is
based on the regulation of the inlet flow to the tank 1

Control design block diagrams (\viSSIM30\APPEXAMPL\CTRL_DES)

Block diagram

Description

PIDTUNE.VSM
PLL_CTRL.VSM
RL_DESVSM
V_DERPOL.VSM

PID control gain optimization
Phase-locked loop servo that models a simple controller
Root locus design example

Van der Pol’s nonlinear dynamical system

Dynamical systems block diagrams (\wiSSIM30\APPEXAMPL\DYN_SYS)

300

Block diagram

Description

BOUNCE.VSM
CORNU.VSM
LORENZ.VSM

MANUFACT.VSM
METER.VSM
RAYLEIGH.VSM
ROCKET.VSM
SOMBRERO.VSM
SPRING.VSM
STUKBLOK.VSM

Bouncing ball and the dynamic exchange of data

Cornu's spiral

Chaotic system based on the Lorenz attractor
Manufacturing and product distribution organization
Ilustrates uses of the meter block

Rayleigh equation for bubble growth in super heated liquids
Rocket dynamics

Parameter sweep for Sombrero function

Simple, second-order, damped harmonic system

Motion with static coulomb stiction



Appendix D Sample Block Diagrams

Electro-mechanical block diagrams (\wiSSIM30\PPEXAMPL\ELECTRO)

Block diagram Description

ACMOTOR.VSM Three-phase AC motor system that plots motor speed and
torque against time

DCMOTOR.VSM GAE 12 amp micro-torque motor response curve under mild
loading conditions

DOORSYS.VSM Digitally controlled electro-mechanical door system

FLEXLOAD.VSM Response of a DC motor and gearbox with deadband to a
flexible load

FW_RECT.VSM Full wave rectifier test case

SM_1PH.VSM Stepper motor system

Environmental block diagrams (\viSSIM30\APPLEXAMPL\ENVIRON)

Block diagram Description

BIOREACT.VSM Bio-reactor showing cell culture growth in a nutrient solution

ROOMCTRL.VSM HVAC model of asingle-room cooling system with on/off
thermostat

Fixed-point DSP block diagrams (\vISSIM30\APPLEXAMPL\FIXPTDSP)

Block diagram Description
FILTDESN.VSM Unit delay filter implementation
SCALE.VSM Simulation of numerical overflow in fixed-point DSP

Man-machine interface block diagrams (vissim3aowvimi)

Block diagram Description
MORE_PLT.VSM Moore control panel
PIDPLATE.VSM PID control panel

Motion control block diagrams (\wissSIM30\MOTION)

Block diagram Description
PACDEMO.VSM Pacific Scientific motion control demo
QUADCODE.VSM Quadrature encoding

301



Appendix D Sample Block Diagrams

Optimization block diagrams (viSSIM30\APPEXAMPL\OPTIMIZE)

Block diagram

Description

2POINT.VSM

LC_FIND.VSM

PIDTUNEZ.VSM

ROOTS.VSM

Classic two-point value problem using cost and
parameterunknown blocks

Illustrates the use of constraint and unknown blocksto
determineinitial conditions of integrators

Optimization of a second order plant with afirst order
controller using cost and parameterunknown blocks

Illustrates the use of constraint and unknown blocksto find
one of the roots of a quadratic equation

Power block diagrams (\visSIM30\APPEXAMPL\POWER)

Block diagram

Description

INVERTER.VSM
PSV_TRBN.VSM

Inverter

Gas turbine simulation

Process control block diagrams (viSSIM30\APPEXAMPL\PROCESS)

302

Block diagram

Description

CSTRS.VSM

POWPLANT.VSM
ROOMCTRL.VSM
VALVEVSM

Simulation of a set of three isothermal continuous stirred tank
reactorsin aseries

Power plant simulation
Room temperature controller

Simulates a mechanical valve with finite actuation time



Appendix D Sample Block Diagrams

Signal processing block diagrams (wiSSIM30\APPEXAMPL\SIG_PROC)

Block diagram

Description

ANL_PLL.VSM
DIG_PLL.VSM

FILTTEST.VSM
F_SERIES.VSM
PWM_EX.VSM

Analog phase-locked loop system
Digital phase-locked loop system
Illustrates filter design capabilities
Fourier series problem

Pulse width modulation of a sinusoidal signal

Logic diagrams and state machines (\wiSSIM30\APPEXAMPL\STATCHRT)

Block diagram

Description

LOG_EX1.VSM
LOGICBLK.VSM
ONESHOT.VSM
PIDPAPER.VSM
STATEM1VSM

Counter and reset counter implementation
Logic and timing blocks

Simulation of a*one shot”

PID controller logical simulation

State machine demo

303



Appendix E

Working with Bitmaps

Pictures, or graphical images, can be configured on many VisSim blocks to enhance
the visual representation of a block diagram. They can also be used to create
animated simulations.

VisSim provides a Bitmap library containing a wide range of motion and process
control pictures. Thelibrary isinstalled in \VISSIM30\BITMAPS\DIAGRAM. If the
library does not contain a picture you need, you can always create one using any of
the numerous drawing and icon creation packages that run under Windows. When
you cresate pictures, follow these simple guidelines:

e Savethepicturesin .BMP file format

e Toavoid screen clutter, create pictures no larger than ¥4' by 34"

305



Appendix E Working with Bitmaps

306

3D-BUT1.BMP 3D-BUT2.BMP B-PIPEOL.BMP B-PIPE02.BMP B-PIPE03.BMP
B-PIPE04.BMP B-PIPE05.BMP B-PIPE07.BMP B-PIPE08.BMP
B-PIPE09.BMP B-PIPE10.BMP B-PIPE11.BMP BAIL-00.BMP BAIL-01.BMP
VAR
E SEL TAG AUTO
BAIL-02.BMP BAIL-O3.BMP BAIL-04.BMP BAIL-05.BMP BAIL-06.BMP
ALARM N AUTO | [ ouT |
MPTR ACK
BAIL-07.BMP BAIL-08.BMP BAIL-L00.BMP BAIL-L01.BMP BAIL-L02.BMP
BAIL-PAN.BMP BFLY.BMP BLU-TANK.BMP CAR.BMP CART-1.BMP
.L. .l. :
CART-2.BMP CART-3.BMP CART-4.BMP CART-5.BMP CHAS-A.BMP
C LI
L®
A
CHAS-B.BMP CHASI.BMP CLRDGN.BMP CO-AXIAL.BMP COMPRESS.BMP




Appendix E Working with Bitmaps

Fofrmsamnfirn

COOLCOIL.BMP DANGER.BMP DISH-R.BMP DISH.BMP DOOR1.BMP
= =2
iy K |
DOOR2.BMP DOOR3.BMP EAR.BMP EVAP.BMP FAIL.BMP
Notch Band Pass High Pass Low Pass
FIBEROPT.BMP FILNOTCH.BMP FILTR_BP.BMP FILTR_HP.BMP FILTR_LP.BMP

FUZZY RULES

FUZZY .BMP

©

GEARS-A.BMP

GEARS-C.BMP

GEARS-D.BMP

b

GEARS-E.BMP

GEARS-F.BMP

h
GEARS-G.BMP

GEARS-H.BMP

GEARS-1.BMP

GRN-TANK.BMP HEART-A.BMP HEART-B.BMP HEART-C.BMP
/
3 == —
"‘\
HEATCOIL.BMP HIGHWIRE.BMP HORN1.BMP HORN2.BMP MIXER.BMP

307




Appendix E Working with Bitmaps

308

MOORE-00.BMP

MOORE-01.BMP

MOORE-02.BMP

MOORE-03.BMP

MOORE-04.BMP

ACK

MOORE-05.BMP

MORE-LO1.BMP

MORE-L02.BMP

MORE-M-P.BMP

MORE-M-S.BMP

MORE-M-V.BMP

MORE-M-X.BMP

MORE-M-Y.BMP

MORE-M00.BMP

MORE-PAN.BMP

=

MORE-SWT.BMP

MORE-U00.BMP

ENTER
CONF

MORE-U01.BMP

'STEP
upP
TAG1
MORE-U02.BMP

STEP
DOWN

TAG 2
MORE-U03.BMP

STORE

MORE-U04.BMP

TUNE
1
b
MORE-U05.BMP

TUNE
2
—
MORE-U06.BMP

ALARM

MORE-U07.BMP

BATIO
BIAS

MORE-U08.BMP

MORE-U09.BMP

NNET.BMP

NORM.BMP

R_;?_q*y

P Contral

P_CTL_BW.BMP

P_CTL.BMP

PANEL-BG.BMP

PANEL.BMP

PASS.BMP

]
R‘QI; ¥

*' Pl Control

PLC_BW.BMP

PI_CTL.BMP




Appendix E Working with Bitmaps

st

at

[fa—m
FID Control ontrol
PIC_C-BW.BMP PIC_CTL.BMP PUMP-LQD.BMP PUMP.BMP Q.BMP
1 — .
5
Rectifier :
R-ARM.BMP RECTIFI.BMP RED-TANK.BMP ROCKT-1.BMP ROCKT-10.BMP

£
)
L]
n

ROCKT-11.BMP

ROCKT-12.BMP

ROCKT-A1.BMP

i X

ROCKT-2A.BMP

£
Y

!

ROCKT-3.BMP ROCKT-3A.BMP ROCKT-4.BMP ROCKT-4A.BMP
e e
5
e 5
) i /
L :
Il -
ROCKT-5.BMP i?OCKT-SA.BMP ROCKT-6.BMP ROCKT-6A.BMP ROCKT-6B.BMP

309




Appendix E Working with Bitmaps

310

ROCKT-7.BMP

ROCKT-7A.BMP

ROCKT-78.BMP

ROCKT-7C.BMP

ROCKT-8.BMP

%?}" —
e B

pt

ROCKT-8A.BMP

ROCKT-9.BMP

ROCKT-9A.BMP

ROCKT10A.BMP

=
1
: P
n
1
ROCKT11A.BMP ROCKT12A.BMP S-PIPEO1.BMP S-PIPE02.BMP
S-PIPE05.BMP S-PIPE06.BMP S-PIPEO7.BMP

S-PIPE08.BMP S-PIPE09.BMP S-PIPE10.BMP S-PIPE11.BMP SAT.BMP
e | el
SENSOR SENSOR SENSOR
SD-AUTO.BMP SD-MAN.BMP SENSOR-H.BMP SENSOR-L.BMP SENSOR.BMP
SERVER BMP SHUTDWNO.BMP SHUTDWN2.BMP SLIDER-1.BMP SLIDER-2.BMP




Appendix E Working with Bitmaps

SLIDER-3.BMP

SLIDER-4.BMP

-
0o o

SW-AUTO.BMP

O
@

SW-IND1.BMP

@
©

SW-IND2.BMP

sl

&

g

[

SW-LON.BMP SW-MAN.BMP SW-TOGG1.BMP SW-TOGG2.BMP TANK-BEZ.BMP

TANK-SM.BMP TELEPOLE.BMP THERM-BG.BMP TIRE-ONL.BMP TIRE.BMP

TIRE1.BMP TIRE2.BMP TRANS-M.BMP TRANS.BMP VALVE-H.BMP
\\\

VALVE.BMP VAT.BMP VENT.BMP

311




Appendix F
VisSim Viewer

VisSim Viewer isarun-time version of VisSim that allows you to distribute your
block diagram models to end users not licensed to use VisSim. VisSim Viewer
provides end users with all the features and capabilities of VisSim, with the
following exceptions:

e |t will not let end users create new block diagrams

o Itwill not let end users add, delete, or reposition block, or change wiring paths
in the diagrams they view

Distributing VisSim Viewer and your block diagrams to end users

Asalicensed user of Professional VisSim, you are granted aroyalty-free right to
reproduce and distribute up to 100 copies of VisSim Viewer, as described under the
terms of the VisSim Viewer Distribution License Agreement, at the end of this
appendix. Please take a minute to review this agreement.

» Todistribute VisSim Viewer

1. Copy VSVIEWER.EXE from your VisSim main directory to another disk.
2. Copy your diagram files to the copied VisSim Viewer disk or another disk.
3

Include printed copies of the following sections of this appendix with the
VisSim Viewer: “VisSim Viewer documentation,” “Installing and starting
VisSim Viewer,” and “VisSim Viewer End User License Agreement.”

VisSim Viewer documentation

The VisSm Viewer User’s Guide has been formatted as a Microsoft Writefile
named VIEWER.WRI and isincluded on the VisSim Viewer disk. End users should

313



Appendix F VisSim Viewer

314

make a printed copy of thisfile as soon asthey install VisSim Viewer on their
computers. VIEWER.WRI contains information on:

e Instaling, starting, and quitting VisSim Viewer

e Basic windowing techniques

e Using online help

It also provides tutorial lessons that cover:

e Loading, viewing, smulating, and optimizing a block diagram
e  Observing simulation results using plot and stripChart blocks
e  Printing block diagrams, plots, and strip charts

e Copying block diagramsto other applications

e Savingfiles

Installing and starting VisSim Viewer

Before installing VisSim Viewer, end users should check that their computers meet
the following minimum configuration:

e Microsoft Windows version 3.1 or higher

e EGA or higher resolution monitor

e Atleast 1 MB hard disk space

Atleast 1 MB RAM with 256K configured as extended memory

» Toinstall VisSim Viewer

1. Start Windows.

2. Insert the VisSim Viewer disk into the floppy drive.

3. Do one of thefollowing:
For thisplatform Do this
Windows 95 or Windows NT Select Start and choose the Run command.
Windows 3.1 Select File from the Program Manager menu

bar and choose the Run command.
4. Inthe Command Line box, type aiinstall or b:install, and click on OK.

At the completion of the installation, Install builds a VisSim group window with a
VisSim Viewer icon insideit. To start VisSim Viewer, double-click on the VisSim
Viewer icon.



Appendix F VisSim Viewer

VisSim Viewer End User License Agreement

Thisisalega agreement between you, the end user, and Visua Solutions, Incorporated
("VSI"). BY OPENING THIS SEALED DISK PACKAGE AND USING THE SOFTWARE,
YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN
THE UNOPENED DISK PACKAGE AND THE ACCOMPANYING ITEMSTO THE
PLACE YOU OBTAINED THEM FOR A FULL REFUND. THISAGREEMENT IS
SEPARATE FROM ANY AGREEMENT BETWEEN YOU AND THE SUPPLIER OF ANY
ACCOMPANYING .VSM OR OTHER FILES.

1. OWNERSHIP OF THE SOFTWARE. The enclosed VSl software program ("SOFTWARE") and the
accompanying written materials are owned by VS| or its suppliers and are protected by United States copyright laws and
international treaty provisions and all other applicable national laws. Therefore, you must treat the SOFTWARE like any
other copyrighted material (e.g., a book or musical recording) except that if the SOFTWARE is not copy protected, you
may either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the
SOFTWARE to a single hard disk, provided you keep the origina solely for backup or archival purposes. You may not
copy the written materials accompanying the SOFTWARE.

2. GRANT OF LICENSE. VSl grants to you the right to use one copy of the enclosed SOFTWARE on a single
computer. The SOFTWARE isin "use" on a computer when it is loaded into temporary memory (i.e., RAM) or installed
into permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that computer. You may network the
SOFTWARE, provided you have a separate license for each computer at which the SOFTWARE is used.

3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and
accompanying written materials on a permanent basis, provided you retain no copies and the recipient agrees to the
terms of this Agreement. You may not reverse engineer, decompile, or disassemble the SOFTWARE. If the
SOFTWARE is an update or has been updated, any transfer must include the update and all prior versions.

4. LIMITED WARRANTY. VS| warrants that the SOFTWARE will perform substantially in accordance with the
accompanying written materials for a period of 90 days from the date of your receipt of the SOFTWARE. Any implied
warranties on the SOFTWARE are limited to 90 days. Some states do not allow limitations on duration of an implied
warranty, so the above limitation may not apply to you. VSI makes no warranties concerning .VSM files or other
software supplied by other companies.

5. CUSTOMER REMEDIES VSI'S ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT
VSI'S CHOICE, EITHER (A) RETURN OF THE PRICE PAID OR (B) REPLACEMENT OF THE SOFTWARE THAT
DOES NOT MEET VSI'SLIMITED WARRANTY AND WHICH ISRETURNED TO VSI WITH A COPY OF YOUR
RECEIPT. Any replacement SOFTWARE will be warranted for the remainder of the original warranty period or 30
days, whichever islonger. These remedies are not available outside the United States of America.

6. NO OTHER WARRANTIES VS| DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, WITH RESPECT TO THE SOFTWARE AND THE
ACCOMPANYING WRITTEN MATERIALS. This limited warranty gives you specific legal rights. You may have
others, which vary from state to state.

7. This Limited Warranty is void if failure of the SOFTWARE has resulted from modification, accident, abuse, or
misapplication.

8. NO LIABILITY FOR CONSEQUENTIAL DAMAGES IN NO EVENT SHALL VS| OR ITS SUPPLIERS BE
LIABLE FOR ANY OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS VSI PRODUCT,
EVEN IF VS| HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, VSI'SENTIRE
LIABILITY UNDER ANY PROVISION OF THIS AGREEMENT SHALL BE LIMITED TO THE AMOUNT
ACTUALLY PAID BY YOU FOR THIS SOFTWARE. Because some states do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitations may not apply to you.

9. This Agreement is governed by the laws of the State of Massachusetts, U.SA.

10. Should you have any questions concerning this Agreement, or if you desire to contact VS| for any reason, please
write: Visual Solutions, Inc., 487 Groton Rd., Westford, Massachusetts 01886.

11. U.S. GOVERNMENT RESTRICTED RIGHTS The SOFTWARE and accompanying written materias are
provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of The Rights in Technica Data And Computer Software clause at 52.227-7013.
Contractor/manufacturer is Visual Solutions, Inc./487 Groton Rd./Westford, MA 01886.

315



Appendix F VisSim Viewer

VisSim Viewer Distribution Agreement

316

Thisisalegal agreement between you, alicensed owner of Professional VisSim or
the VisSim Viewer software package and Visual Solutions. Visual Solutions grants
you aroyalty-free right to reproduce and distribute 100 copies of VisSim Viewer
provided that you: (a) distribute VisSim Viewer only in conjunction with and as a
part of your block diagram(s); (b) do not require the use of VisSim companion
products (See “ Additional Grant of License”); (c) do not use Visua Solutions' name,
logo, or trademarks to market your block diagram(s); (d) legally acknowledge Visual
Solutions’ copyrights and trademarks where applicable; and (e) agree to indemnify,
hold harmless, and defend Visual Solutions and its suppliers from and against any
claims or lawsuits, including attorney fees that arise or result from the use or
distribution of your block diagram(s).

Additional Grant of License: If, to use your block diagram(s), VisSim Viewer end
users require the use of one or more VisSim companion products, call your Visual
Solutions Sales Representative for product re-sale terms and restrictions.



Index

I= (not equal to) block, 152
$firstPass variable, 132
$lastPass variable, 132
$runCount variable, 132
$timeStart, 132

$timeStep variable, 132
$timeStop, 132

* (multiply) block, 142

/ (divide) block, 145

< block, 147

<= block, 148

== (equal to) block, 149

> block, 153

>= block, 155

1/Sblock, 192, 202, 231
VX (inverse) block, 156
1/Z block (unitDelay), 51, 52, 257

A

absblock, 157
acos block, 159
adaptive Bulirsh-Stoer algorithm, 38
adaptive Runge Kutta 5th algorithm, 38
Add (File), 128
Add Connector (Edit), 22
add menu item function, 286
adding block diagrams, 128
aerospace block diagrams, 298
alarms, audio and visual, 199
algebraic loops, 58, 84
aligning blocks, 29
analog filter prototypes, 101-2
and block, 160
animate block, 161
applying pictures, 79
creating animation, 79
example, 77
animation, 77-82
faceplates, 165
hit testing, 168
animation block diagrams, 298

Animation blocks
animate, 78-81, 161
lineDraw, 81-82, 205

Annotation blocks
bezel, 165
comment, 172
date, 178
index, 190
label, 198
scalarToVec, 237
variable, 128-32, 260
vecToScalar, 260
wirePositioner, 261

Arithmetic blocks
* (multiply), 142
/ (divide), 145
VX (inverse), 156
abs, 157
convert, 173
gain, 186
pow, 224
sign, 238
summingJunction, 245
unitConversion, 256
-X (negate), 143

arithmetic expressions, entering, 18

asin block, 161

atan2 block, 162

auto-panning, 4

B

backward Euler (Stiff) algorithm, 38
band specifications, 105
bar graphs, 75-77
bessel block, 163
Bessel filters, 101, 102
bezel block, 165
biophysical block diagrams, 298
bitmap library, 305
block diagrams
adding, 128
aerospace, 298
animation, 298
annotating, 172, 178, 198
biophysical, 298

317



Index

block diagrams (continued)
business, 298
chemical engineering, 299
control design, 300
copying to other applications, 29
creating, 7
DSP, 301
dynamical systems, 300
electro-mechanical, 301
embedding, 127
environmental, 301
logic, 303
motion, 301
opening, 10
optimization, 302
power, 302
previewing, 11
printing, 11-13
process control, 302
protecting, 135-36
samples, 298-301
saving, 11
setting up, 7
signal processing, 303
state machines, 303
statistics, 134
viewing, 266
Block Labels (View), 267
block level functions
userBlock(), 279
user BlockEvent(), 280
user BlockPA(), 283
user BlockPC(), 283
user BlockPI(), 283
user BlockSE(), 283
user BlockSS(), 283
block properties
arithmetic expressions, 18
C expressions, 18
numeric data, 18
precision control, 18-19
setting up, 17-18
Block Properties (Edit), 17

318

blocks

1= (not equdl to), 152
* (multiply), 142

/ (divide), 145

<, 147

<=, 148

== (equal to), 149

> 153

>=, 155

UX (inverse), 156
abs, 157

acos, 159

aligning, 29

and, 160

animate, 78-81, 161
asin, 161

atan2, 162

bessel, 163

bezel, 165

buffer, 166

button, 168

case, 169

changing text attributes, 267
comment, 172
compound, 123
connector tabs. See connector tabs
const, 172

constraint, 83, 173
convert, 173
copying, 26-29

cos, 173

cosh, 174

cost, 89, 174
crossDetect, 175
custom, 16

date, 178

DDE, 11922, 178
DDEreceive, 115-17, 178
DDEsend, 117-19, 178
deadband, 179
deleting, 32
derivative, 179
display, 180
dotProduct, 181
embed, 127, 138, 181



Index

blocks (continued) blocks (continued)
error, 181 quantize, 227
exp, 182 ramp, 229
export, 111-14, 182 real Time, 229
expression, 182 relay, 230
extensibility, 260, 275-88 replacing, 30-32
fft, 184 resetintegrator (1/S), 231
finding, 30-32 rt-Dataln, 234
flipping, 29 rt-DataOut, 234
gain, 186 sampleHold, 235
gaussian, 188 scalarToVec, 237
globa Constraint, 188 selecting, 25
histogram, 7375, 188 setting up. See block properties
ifft, 189 sign, 238
import, 109-12, 190 sin, 239
index, 190 sinh, 240
inserting, 15 sinusoid, 240
int, 192 dlider, 241
integrator, 51 sart, 242
integrator (1/S), 192 stateSpace, 51, 54, 242
invert, 198 step, 244
label, 198 stop, 244
light, 199 stripChart, 67—73, 245
limit, 201 summingJunction, 245
limitedintegrator (1/S), 202 tan, 247
lineDraw, 81-82, 205 tanh, 248
In, 206 timeDelay, 249
log10, 205 transferFunction, 48, 51, 54, 99, 100
map, 206 transferFunction, 252
max, 215 transpose, 255
merge, 217 types, 16
meter, 75-77, 218 uniform, 256
min, 218 unitConversion, 256
moving, 26-29 unitDelay, 98
multiply, 220 unitDelay (1/2), 51, 52, 257
neuralNet, 221 unknown, 83, 259
not, 221 userFunction, 260, 275-88
or, 222 user-written, 260, 275-88
parabola, 223 variable, 260
parameterUnknown, 89, 224 vecToScalar, 260
plot, 59-67, 224 vsum, 261
pow, 224 wirePositioner, 261
PRBS, 226 wiring. See wiring blocks
properties. See block properties -X (negate), 143
pulseTrain, 226 xor, 261

319



Index

Blocks menu. See also individual blocks

adding blocksto, 288
Boolean blocks

1=, 152

<, 147

<=, 148

==, 149

> 153

>= 155

and, 160

not, 221

or, 222

xor, 261
buffer block, 166
built-in variables, 132
business block diagrams, 298
Butterworth filters, 101, 102
button block, 168

C

C expressions, entering, 18
case block, 169
Chebyshev filters, 101, 102
check boxes, 6
checkpointing simulations, 39
checkpointing system states, 193, 203, 232, 257,
280
chemical engineering block diagrams, 299
choosing commands, 4
Clear (Edit), 32
Clear Errors (Edit), 57
Close button, 2
closed-loop system, 45-48
coloring
plotting background, 267
screen display, 267
text, 267
window, 267
wires, 267
Colors (View), 21, 267
command buttons, 6
comment block, 172
retaining character format, 267
component libraries
DSP, 292

320

component libraries (continued)
dynamical systems, 292
electrical systems, 292
electro-mechanical systems, 292
hydraulic systems, 293-94
process control, 295
thermal control, 295
turbine, 295
compound blocks
basics, 133
coloring, 267
configuring pictures on, 125
connector labels, 126, 267
connector tabs, 124
containing global variables, 131
creating, 124, 127
dissolving, 126
drilling, 124
embedding, 127
hiding, 125
protecting, 136-37
selecting, 25
Connector Labels (View), 126, 267
connector tabs, 19
adding and removing, 22, 280
coloring, 266
connection class, 23
in display mode, 24
in presentation mode, 24
labels, 126, 267
manipulating, 22
on compound blocks, 124
probing, 56
restricting access, 24
symbols, 22, 24
unconnected inputs, 23
const block, 172
constraint block, 83, 173, 174
Continue (Simulate), 55
continuous simulations, 44-51
spring-damper arm, 4548
spring-damper arm with external force
example, 50-51
continuous time transfer function, 4849, 50-51
control design block diagrams, 300



Index

Control Panel, 54
Control Panel (View), 55
controls toolbox functions, 289
convert block, 173
Copy (Edit), 28
copying
block diagrams, 29
character formatting, 267
copying blocks
drap-and-drop editing, 27
rules, 27
with Clipboard, 28
cos block, 173
cosh block, 174
cost block, 89
cost function, 89

Create Compound Block (Edit), 124, 127

crossDetect block, 175

Cut (Edit), 28

cutting and pasting blocks
rules, 27
with Clipboard, 28
with drag-and-drop, 27

D

datal/O, 182
Data Types (View), 266
date block, 178
.DAT files, exporting, 182
DDE
creating links, 114
editing alink address, 122
linking from another app, 115-17
linking to another app, 117-19
two-way links, 119-22
DDE block, 119-22, 178
DDE blocks
DDE, 119-22, 178
DDEreceive, 115-17, 178
DDEsend, 117-19, 178
DDEreceive block, 115-17, 178
DDEsend block, 117-19, 178
deadband block, 179
definition and below scope, 130, 131
degMsg(), 286

deleting blocks, 32
derivative block, 179
Diagram Information (File), 134, 135
diagram scope, 130, 131
diagram tree
expand and collapse, 4
jump to location, 4
resizing, 4
dialog boxes, 67
missing, 5
difference equations, 52
differential equations, 45-48
converting to integration, 44
differentiators, 104
digital filters. Seefilter design
discrete MIMO systems, 52
discrete time simulations, 51-53
entering difference equations, 52
multi-rate, 52
display block, 180
display boxes, 7
Display Mode (View), 22, 266
Dissolve Compound Block (Edit), 126
divide (/) block, 145
DLL functions, 260
adding to Blocks menu, 288
building with Project Build, 276
calling, 287
criteria, 276
debugging, 287
VisSim calling conventions, 277
dotProduct block, 181
drop-down list boxes, 6
DSP block diagrams, 301
DSP components, 292
Dynamic Link Library functions. See DLL
functions

dynamical system components, 292
dynamical systems block diagrams, 300

E

electrical system components, 292
electro-mechanical block diagrams, 301
electro-mechanical system components, 292
electro-mechanical toolbox functions, 290

31



Index

embed block, 127, 181
editing, 128
protecting, 138-39
reconnecting, 128

environmental block diagrams, 301

equal to (==) block, 149

error block, 181

error conditions, 57, 181

error conditions, resetting, 57, 181

Euler algorithm, 37

event handler function, 280

Exit (File), 13

exp block, 182

export block, 111-14, 182

exported functions
debMsg(), 286
getSimTime(), 286
getSimTimeStep(), 286
setBlockErr(), 286
setUserBlockMenu(), 286
stopSimulation(), 286
vissimRequest(), 284

expression block, 182

extending the block set, 260, 275-88

F

feedback loops, 58, 84
fft block, 184
FFT plots, 62
FFT strip charts, 69
fields, 9
filter design
comparison, 100
FIR, 1047
frequency domain, 99
IR, 99, 100-103
operations, 98
time domain, 98-99
with transferFunction block, 100-107
Find (Edit), 30-31
Match Variable Definitions Only, 132
finding blocks, 30-31
FIR filters, 100, 1047
band specifications, 105
continuous, 104

322

FIR filters (continued)
discrete, 104
generating, 106
order, 105
tapped delay implementation, 105
flag error function, 286
Fletcher Reeves global optimizer, 91
flexWires. See wiring blocks
unbundling, 260
Flip Horizontal (Edit), 29
Fonts (View), 267
footers, 8
frequency domain filters, 99
frequency domain plots, 62
frequency domain strip charts, 69

G

gain block, 186

gauges, 75-77

gaussian block, 188

general information function, 284

get current simulation time function, 286

get current simulation time step function, 286

getSimTime(), 286
getSimTimeStep(), 286
global optimization
avoiding system instability, 96
example, 91
tips, 96
global optimizers
building, 273
Fletcher Reeves, 91
Polak-Ribiere, 91
Powell, 91
source files, 268
vissmRequest function, 271
global variables, 131
global Constraint block, 188
Go (Simulate), 55
greater than (>) block, 153
greater than or equal to (>=) block, 155
grids, snapping to, 29



Index

H

headers, 8
Hilbert transfromers, 104
histogram block, 73-75, 188
sizing, 74
hybrid ssimulations, 54
hydraulic system components, 293-94

ifft block, 189
IR filters, 99, 100-103
analog filter method, 101
attenuation frequencies, 102
attenuation levels, 102
band pass specification, 102
Bessdl, 101, 102
Butterworth, 101, 102
Chebyshev, 101, 102
cut-off frequencies, 102
generating, 103
Inverse Chebyshev, 101, 102
implicit equations
convergence warnings, 85
diagrams including, 302
feedback loops, 84
setting up, 83
solving, 84
implicit solver
building with nmake, 270
error tolerance, 85
maximum iteration count, 85
Newton-Raphson, 85
perturbation, 85
relaxation, 85
source files, 268
user-defined, 85
vissimRequest function, 268—69
import block, 109-12, 190
importing data
map block, 206
transferFunction block, 252
with stateSpace block, 242
index block, 190

initial conditions, 17, 193, 203, 223, 235, 29, 232,
240, 249, 257
initialization function, 278
inserting blocks, 15
int block, 192
integration algorithms
adaptive Bulirsh-Stoer, 38
adaptive Runge Kutta 5th order, 38
backward Euler (Stiff), 38
choosing, 36-38
Euler, 37
input functions, 58
integrator block, 192
iteration count, 38
limitedintegrator block, 202
resetintegrator block, 231
Runge Kutta 2d order, 37
Runge Kutta 4th order, 38
selecting, 35
step sizes, 35, 38
trapezoidal, 37
truncation errors, 38
unstable settings, 58
Integration blocks, 44
integrator, 192
limitedintegrator, 202
resetintegrator, 231
integrator (1/S) block, 51, 192
inverse (1/X) block, 156
inverse Chebyshev filters, 101, 102
invert block, 198

L

label block, 198
landscape paper orientation, 8
less than (<) block, 147
less than or equal to (<=) block, 148
level scope, 130, 131
light block, 199
limit block, 201
limitedintegrator (1/S) block, 202
Linear System blocks
stateSpace, 242
transferFunction, 48, 100, 252
linearization, 242, 252

323



Index

linearization data
M file, 242, 252
MAT file, 243, 252
lineDraw block, 81-82, 205
In block, 206
local variables, 131
10g10 block, 205
logic diagrams, 303

M

map block, 206
MAT files
exporting, 182
importing, 243, 252
MatLab
exporting data to, 182
importing data from, 243, 252
Matrix Operation blocks
buffer, 166
dotProduct, 181
fft, 184
ifft, 189
invert, 198
multiply, 220
transpose, 255
vsum, 261
max block, 215
Maximize button, 2
menu bar, 2
merge block, 217
meter block, 218
coloring, 267
properties, 7677
sizing, 75
types, 75
M files
exporting, 182
importing, 242, 252
min block, 218
Minimize button, 2
MMI
audio and visual alarms, 199
multiple bitmap animation, 199
motion control block diagrams, 301

324

moving blocks
drag-and-drop, 27
rules, 27
with Clipboard, 28
multiply (*) block, 142
multiply (matrix) block, 220
multi-rate simulations, 52

N

negate (-X) block, 143
neuralNet block, 221
New (File), 7-9
Newton-Raphson solver, 85
noise
random, 188
uniform, 256
Nonlinear blocks
case, 169
crossDetect, 175
deadband, 179
int, 192
limit, 201
map, 206
max, 215
merge, 217
min, 218
quantize, 227
relay, 230
sampleHold, 235
not block, 221
not equal to (!=) block, 152

O

Open (File), 10

opening
anew diagram, 7-9
an existing diagram, 10
fast opening, 10
read-only access, 10

optimization. See global optimization; implicit
equations; implicit solver; Optimization

Properties (Simulate)
optimization block diagrams, 302



Index

Optimization blocks
constraint, 83, 173
cost, 174
globa Constraint, 188
parameterUnknown, 224
unknown, 83, 259
Optimization Properties (Simulate), 90
or block, 222

P

Pade approximations toolbox functions, 290
page setup

fields, 9

fit to page, 8

headers and footers, 8

margins, 8

orientation, 8, 13

paper size, 8

paper source, 8

tiling, 8

with Print command, 12
Page Setup (File), 7
panning, 4
parabola block, 223
parameter allocation function, 283
parameter change function, 283
parameter initialization function, 283
parameters. See also block properties
parameterUnknown block, 89, 224
passwords, 134
Paste (Edit), 28
Paste Link (Edit), 115
Paste Link (Edit), 119
path alias, 132

creating, 132

inserting, 133
plot block, 224

coloring, 267

sizing, 60

zooming, 61
plot properties

appearance, 67

axisdivisions, 67

axis labels, 66

data points, 64

plot properties (continued)
decibd Y, 65
external trigger, 63
FFT, 62
fixed bounds, 62, 66
geometric markers, 63
grid lines, 65
line types, 64, 70
log plots, 64
max data points, 64
multi XY traces, 64
overplotting, 62
reading coordinates, 65
retracing, 67
signal labels, 66
time domain, 60
time scaling, 66
titles and subtitles, 66
truncating FFT data, 62
XY plots, 63
Polak-Ribiere global optimizer, 91
portrait paper orientation, 8
pow block, 224
Powell global optimizer, 91
power block diagrams, 302
PRBS block, 226
Preferences (Edit)
Addons, 288
Path Aliases, 132
Preferences
Auto Connect Radius, 21
Color Compound Block, 267
Color Display, 267
High Precision Display, 18-19
Show Horizontal Scroll Bar, 264
Show Vertical Scroll Bar, 264
Snap To Grid, 11, 29
Training Mode Labels, 267
Use Rich Text Format, 172, 267
presentation mode
activating, 266
affect on connector tabs, 24
Presentation Mode (View), 266
previewing block diagrams, 11

325



Index

Print (File)

All, 12

Copies, 12

Current Level, 12

Current Level and Below, 12

Fit to Page, 12

orientation, 13

paper size, 13

paper source, 13

Print to File, 12

printer, 12

Tile Pages, 12
print debug message function, 286
Print Preview (File), 11
printing, 11

fit to page, 8

landscape mode, 13

previewing, 11

strip charts, 68

tiling, 8
probing connector values, 56
process control block diagrams, 302
process control components, 295
protecting

block diagrams, 10, 135-36

compound blocks, 13637

embedded block diagrams, 138-39
pulseTrain block, 226

Q

quantize block, 227

R

radio buttons, 7
ramp block, 229
Random Generator blocks
gaussian, 188
PRBS, 226
uniform, 256
random numbers, generating, 40
range control
setting, 33

326

Real Time blocks

rt-Dataln, 234

rt-DataOut, 234
Real Time Config (File), 234
real Time block, 229
real-time simulations, 35
relay block, 230
Remez Multiple Exchange agorithm, 104
Remove Connector (Edit), 22
Rename Block (Edit), 125
Repaint Screen (Edit), 10
Replace (Edit), 31
replacing blocks, 31
request simulation end function, 286
Reset (Simulate), 56
resetintegrator (1/S) block, 231
right mouse button, 18
rt-Dataln block, 234
rt-DataOut block, 234
Runge Kutta 2d order algorithm, 37
Runge Kutta 4th order algorithm, 38

S

sampleHold block, 235

Save (File), 11

Save As (File), 11

saving block diagrams, 11

saving system states, 39, 57

scalarToVec block, 237

scoping, 130

screen, coloring, 267

scroll bars, 4

scrolling lists, 7

selecting blocks
area select, 26
canceling selections, 26
compound blocks, 25
individualy, 25
toggle select, 26

setBlockErr(), 286

setUserBlockMenu(), 286

sign block, 238

signal, 303



Index

Signa Consumer
display, 180
error, 181
export, 111-14, 182
histogram, 73-75, 188
light, 199
meter, 75-77, 218
plot, 59-67, 224
stop, 244
stripChart, 6773, 245
signal generation toolbox functions, 291
Signal Producer
Signa Producer blocks
button, 168
const, 172
import block, 109-12, 190
parabola, 223
pulseTrain, 226
ramp, 229
rea Time, 229
sinusoid, 240
dlider, 241
step, 244
simulation end function, 283
simulation level functions
vsmEvent(), 278
vsminit(), 278
Simulation Properties (Simulate)
Defaults, 41
Integration Method
Adaptive Bulirsh-Stoer, 38
Adaptive Runge Kutta 5th order, 38
Backward Euler (Stiff), 38
Euler, 37
Max Iteration Count, 38
Max Truncation Error, 38
Min Step Size, 38
Runge Kutta 2nd order, 37
Runge Kutta 4th order, 38
Trapezoidal, 37
Preferences
Check Connections, 39
Checkpoint State, 39
Frequency Units, 39, 103
Notify Simulation End, 40

Preferences (continued)
Propagage Integer Types, 40
Raise Real-Time Priority, 40
Random Seed, 40
Warn Nonintegral Clock, 40
Warn Nonintegral Delay, 40
Warn Numeric Overflow, 40

Range
Auto Restart, 34
End, 35
Retain State, 34
Runin Rea Time, 35
Start, 35
Step Size, 35

simulation start function, 283
simulations

animated, 199

auto restart, 34

basics, 43

checkpointing, 39
continuing, 55
continuous, 44-51

Control Panel, 54

default settings, 41
discrete, 51-53

dynamic execution, 56
end-of-sim message, 40
error conditions, 57
hybrid, 54

integration algorithms, 35-38
iterations, 38

multi-rate, 52

preferences, 3840

raising process priority, 40
random numbers, 40
range control, 33
real-time, 35

resetting, 56
single-stepping, 56
snapping system states, 57
starting, 55

step sizes, 35, 38
stopping, 55, 244
trimming a system, 57
truncation errors, 38

327



Index

simulations (continued)
unconnected blocks, 58
sin block, 239
sinh block, 240
sinusoid block, 240
dlider block, 241
Snap State (Simulate), 57
sound files
exporting, 182
playing, 182, 199

spring-damper arm example, 45-48

modified, 50-51
sort block, 242
starting VisSim, 1, 263
state machine diagrams, 303
stateSpace block, 51, 54, 242
state-space matrices, 242, 252
status bar, 3
step block, 244
step sizes, 35, 38
Stop (Simulate), 55
stop block, 244
stopSimulation(), 286
strip chart properties
appearance, 73
axisdivisions, 72
axislabels, 71
decibel Y, 70
displayed time, 72
external trigger, 70
FFT, 69
fixed bounds, 69, 72
geometric markers, 69
grid lines, 70
Logy, 70
max data points, 70
scroll back interval, 72
signal labels, 71
time domain, 68
scaling, 72
titles and subtitles, 71

strip charts. See stripChart block

stripChart block, 6773, 245
coloring, 267
printing, 68

328

stripChart block (continued)

properties. See strip chart properties

sizing, 68
summingJunction block, 245
system states

checkpointing, 39

retaining, 34

snapping, 57

system-wide event function, 278

T

tabs, 6

tan block, 247
tanh block, 248
text boxes, 6

thermal control components, 295

Time Delay blocks
timeDelay, 249
unitDelay (1/2), 257

time domain filters

with transferFunction block, 99

with unitDelay block, 98
time domain plots, 60
time domain strip charts, 68
time step function, 279
timeDelay block, 249
titlebar, 2
titles, block diagram, 10, 134
toolbar
dimmed buttons, 3
editng, 265
hiding, 264
moving, 2
Toolbar (Edit), 26566
Toolbar (View), 2, 264
toolboxes
controls, 289
Electro-mechanical, 290
Pade approximations, 290
signal generation, 291
tools, 291
tools toolbox functions, 291
training mode labels, 267



Index

Transcendental blocks
acos, 159
asin, 161
atan2, 162
bessel, 163
cos, 173
cosh, 174
exp, 182
In, 206
log10, 205
sin, 239
sinh, 240
sgrt, 242
tan, 247
tanh, 248
transfer functions, 50-51
continous time, 48-49
transferFunction block, 252
with polynomial constants, 4849
transferFunction block, 48, 51, 54, 99, 100, 252
transpose block, 255
trapezoidal agorithm, 37
trimming a system, 57
turbine components, 295

U

Undo (Edit), 10

uniform block, 256
unitConversion block, 256
unitDelay block, 51, 52, 98, 257
unknown block, 83, 259
user Block(), 279

user BlockEvent(), 280
user BlockPA(), 283

user BlockPC(), 283

user BlockPI(), 283

user BlockSE(), 283

user BlockSS(), 283

userFunction block, 260. See also DLL functions
user-written blocks, 260. See also DLL functions

\Y

variable block
built-in, 132

variable block (continued)
creating, 129
finding definitions, 132
scoping, 130
using, 129, 260
vector wires, 237, 260. See wiring blocks
vecToScalar block, 260
views
block |abels, 267
diagram text, 267
display mode, 266
presentation mode, 266
screen display, 267
training mode labels, 267
VisSim
customizing, 13, 266
exiting, 13
starting, 1, 263
VisSim Viewer, 313-16
distributing, 313
distribution license agreement, 316
documentation, 313
end user license agreement, 315
installing, 314
starting, 314
vissimRequest function, 268-69, 27172, 284
vsmEvent(), 278
vsminit(), 278
VSOLVER.C, 271
VSOLVER.DEF, 271
VSOLVER.MAK, 271
vsum block, 261
VSUSER.H, 271

W

WAV files

exporting, 182

playing, 182, 199
windows, color, 267
wirePositioner block, 21, 261
wires

bundling, 237

coloring, 267

positioning, 261

329



Index

wiring blocks

X

auto-connect, 21
bundling flexWires, 20
colors, 21

creating, 20

deleting, 22

flexWires, 19

hiding, 22

positioning, 21

rules of use, 20
unbundling flexWires, 20
unconnected blocks, 58
vector wires, 19, 260
wireless blocks, 260

-X (negate) block, 143
xor block, 261
XY plots, 63

330



