lqe - linear quadratic estimator (Kalman Filter)
lqe returns the Kalman gain for the filtering problem in continuous or discrete time.
P21 is a syslin list representing the system P21=[A,B1,C2,D21]
The input to P21 is a white noise with variance:
[B1 ] [Q S] BigV=[ ] [ B1' D21'] = [ ] [D21] [S' R]
X is the solution of the stabilizing Riccati equation and A+K*C2 is stable.
In continuous time:
(A-S*inv(R)*C2)*X+X*(A-S*inv(R)*C2)'-X*C2'*inv(R)*C2*X+Q-S*inv(R)*S'=0
K=-(X*C2'+S)*inv(R)
In discrete time:
X=A*X*A'-(A*X*C2'+B1*D21')*pinv(C2*X*C2'+D21*D21')*(C2*X*A'+D21*B1')+B1*B1'
K=-(A*X*C2'+B1*D21')*pinv(C2*X*C2'+D21*D21')
xhat(t+1)= E(x(t+1)| y(0),...,y(t)) (one-step predicted x) satisfies the recursion:
xhat(t+1)=(A+K*C2)*xhat(t) - K*y(t).