sorder - computing the order of a discrete-time system
This parameter is not relevant for meth = 2.
This parameter is not used if batch = 4.
tol(2) - tolerance used for determining an estimate of the system order. If tol(2) >= 0, the estimate is indicated by the index of the last singular value greater than or equal to tol(2). (Singular values less than tol(2) are considered as zero.) When tol(2) = 0, an internally computed default value, tol(2) = s*epsilon_machine*sval(1), is used, where sval(1) is the maximal singular value, and epsilon_machine the relative machine precision. When tol(2) < 0, the estimate is indicated by the index of the singular value that has the largest logarithmic gap to its successor.
Default: tol(1:2) = [0,-1].
Default: printw = 0.
nr = 2*( m + l )*s LDWORK = ( t - 2*s + 3 + 64 )*nr if ( CSIZE > MAX( nr*nr + t*( m + l ) + 16, 2*nr ) ) then LDWORK = MIN( LDWORK, CSIZE - nr*nr - t*( m + l ) - 16 ) else LDWORK = MIN( LDWORK, MAX( 2*nr, CSIZE/2 ) ) end if
LDWORK = MAX( minimum workspace size needed, LDWORK ) where CSIZE is the cache size in double precision words.
If LDWORK is specified less than the minimum workspace size needed, that minimum value is used instead.
If alg = 2, R has m+l+1 additional columns, set at the previous call.
This parameter is not used for batch = 1 or batch = 4.
sorder - function for computing the order of a discrete-time system using SLICOT routine IB01AD.
For one block (data sequences Y, U): [R,n,sval,rcnd] = sorder(meth,alg,jobd,4,conct,s,Y,U);
For f blocks (data sequences Yj, Uj, j = 1 : f):
R = sorder(meth,alg,jobd,1,conct,s,Y1,U1); for j = 2 : f - 1 R = sorder(meth,alg,jobd,2,conct,s,Yj,Uj,tol,printw,ldwork,R) end [R,n,sval,rcnd] = sorder(meth,alg,jobd,3,conct,s,Yf,Uf,tol);
sorder preprocesses the input-output data for estimating the matrices of a linear time-invariant dynamical system, using Cholesky or (fast) QR factorization and subspace identification techniques (MOESP and N4SID), and then estimates the order of a discrete-time realization.
The model structure is :
x(k+1) = Ax(k) + Bu(k) + w(k), k >= 1, y(k) = Cx(k) + Du(k) + e(k),
where x(k) is the n-dimensional state vector (at time k),
u(k) is the m-dimensional input vector,
y(k) is the l-dimensional output vector,
w(k) is the n-dimensional state disturbance vector,
e(k) is the l-dimensional output disturbance vector,
and A, B, C, and D are real matrices of appropriate dimensions.
1. The Cholesy or fast QR algorithms can be much faster (for large data blocks) than QR algorithm, but they cannot be used if the correlation matrix, H'*H, is not positive definite. In such a case, the code automatically switches to the QR algorithm, if sufficient workspace is provided and batch = 4.
2. If ldwork is specified, but it is less than the minimum workspace size needed, that minimum value is used instead.