Scilab Function fstair - computes pencil column echelon form by qz transformations
Calling Sequence
- [AE,EE,QE,ZE,blcks,muk,nuk,muk0,nuk0,mnei]=fstair(A,E,Q,Z,stair,rk,tol)
Parameters
- A
: m x n matrix with real entries.
- tol
: real positive scalar.
- E
: column echelon form matrix
- Q
: m x m unitary matrix
- Z
: n x n unitary matrix
- stair
: vector of indexes (see ereduc)
- rk
: integer, estimated rank of the matrix
- AE
: m x n matrix with real entries.
- EE
: column echelon form matrix
- QE
: m x m unitary matrix
- ZE
: n x n unitary matrix
- nblcks
:is the number of submatrices having full row rank >= 0 detected in matrix A.
- muk:
integer array of dimension (n). Contains the column dimensions mu(k) (k=1,...,nblcks) of the submatrices having full column rank in the pencil sE(eps)-A(eps)
- nuk:
integer array of dimension (m+1). Contains the row dimensions nu(k) (k=1,...,nblcks) of the submatrices having full row rank in the pencil sE(eps)-A(eps)
- muk0:
integer array of dimension (n). Contains the column dimensions mu(k) (k=1,...,nblcks) of the submatrices having full column rank in the pencil sE(eps,inf)-A(eps,inf)
- nuk:
integer array of dimension (m+1). Contains the row dimensions nu(k) (k=1,...,nblcks) of the submatrices having full row rank in the pencil sE(eps,inf)-A(eps,inf)
- mnei:
integer array of dimension (4). mnei(1) = row dimension of sE(eps)-A(eps)
Description
Given a pencil sE-A where matrix E is in column echelon form the
function fstair computes according to the wishes of the user a
unitary transformed pencil QE(sEE-AE)ZE which is more or less similar
to the generalized Schur form of the pencil sE-A.
The function yields also part of the Kronecker structure of
the given pencil.
Q,Z are the unitary matrices used to compute the pencil where E
is in column echelon form (see ereduc)
See Also
Author
Th.G.J. Beelen (Philips Glass Eindhoven). SLICOT