min_weight_tree - minimum weight spanning tree
min_weight_tree tries to find a minimum weight spanning tree for the graph g. The optional argument i is the number of the root node of the tree; its default value is node number 1. This node is meaningless for an undirected graph.
The weights are given by the element edge_weight of the graph list. If its value is not given (empty vector []), it is assumed to be equal to 0 on each edge. Weigths can be positive, equal to 0 or negative. To compute a spanning tree without dealing with weights, give to weights a value of 0 on each edge or the empty vector [].
min_weight_tree returns the tree t as a row vector of the arc numbers (directed graph) or edge numbers (undirected graph) if it exists or the empty vector [] otherwise. If the tree exists, the dimension of t is the number of nodes less 1. If t(i) is the root of the tree: - for j < i, t(j) is the number of the arc in the tree after node t(j) - for j > i, t(j) is the number of the arc in the tree before node t(j)
ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 15 12 13 9 10 14 11 16 1 17 14 15]; g=make_graph('foo',1,17,ta,he); g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642]; g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301]; show_graph(g); t=min_weight_tree(1,g); g1=g; ma=arc_number(g1); n=g1('node_number'); nodetype=0*ones(1,n); nodetype(1)=2; g1('node_type')=nodetype; edgecolor=1*ones(1,ma); edgecolor(t)=11*ones(t); g1('edge_color')=edgecolor; edgewidth=1*ones(1,ma); edgewidth(t)=4*ones(t); g1('edge_width')=edgewidth; x_message('Minimum weight tree from node 1'); show_graph(g1);