lqg_ltr - LQG with loop transform recovery
returns the Kalman gains for:
x = a*x + b*u + l*w1 (sl) y = c*x + mu*I*w2 z = h*x
Cost function:
/+oo | J = E(| [z(t)'*z(t) + ro^2*u(t)'*u(t)]dt) lqg | / 0
The lqg/ltr approach looks for L,mu,H,ro such that: J(lqg) = J(freq) where
/+oo * * * J = | tr[S W W S ] + tr[T T]dw freq | /0
and
S = (I + G*K)^(-1) T = G*K*(I+G*K)^(-1)