msd - mean squared deviation
This function computes the mean squared deviation of the values of a vector or matrix x .
For a vector or a matrix x , y=msd(x) returns in the scalar y the mean squared deviation of all the entries of V x .
y=msd(x,'r') (or, equivalently, y=msd(x,1) ) is the rowwise mean squared deviation. It returns in each entry of the row vector y the mean squared deviation of each column of x .
y=msd(x,'c') (or, equivalently, m=msd(x,2) ) is the columnwise mean squared deviation. It returns in each entry of the column vector y the mean squared deviation of each row of x .
x=[0.2113249 0.0002211 0.6653811;0.7560439 0.3303271 0.6283918] m=msd(x) m=msd(x,'r') m=msd(x,'c')
Wonacott, T.H. & Wonacott, R.J.; Introductory Statistics, fifth edition, J.Wiley & Sons, 1990.