

Faculty of Electrical engineering, Mechanical engineering and Naval architecture 21000 SPLIT R. Boškovića bb

THERMODYNAMIC ASPECTS OF KORNAT ACCIDENT

Authors:

Ph.D. Neven Ninić, professor Head of Departement for Thermodynamics, Thermotehnics and Heat Engines Sandro Nižetić, dipl.ing. Research assistant

Split, 04.February 2008

FAST HEAT SHOCK - "FHS" MODEL ANALYSIS

Input parametres for FHS:

RESULTS OF PARAMETER ANALYSIS FOR FHS

	INPUT PARAMETERS OF "FAST HEAT SHOCK"											PLACE OF THE ACCIDENT		
<i>L</i> (m)	φ	w _{wind} (m/s)	<mark>g _g (kg/m²</mark>)	λ	T _f (K)	m _{air} (kg/s)	m _{fuel} (kg/s)	G _a (kg)	G _f (kg)	Q _f (kW)	Q _r (kW)	t(°C)	Δτ (s)	<i>P</i> (kW/m ²)
250	0,5	10,0	0,6	1,5	880	8,3	0,688	1800	150	11009	8496	271	218	1005
300	-	-8-	-1-	-11-	-11-	9,3	0,772	2160	180	12346	10195	213	233	860
350	-0-	-0-	-0-	-11-	-11-	10,3	0,854	2520	210	13667	11895	166	246	709
300	-	-8-	0,4	-11-	-11-	9,3	0,772	1440	120	12346	10195	213	156	860
-11-	-0-	-0-	0,8	-11-	-11-	9,3	0,772	2880	240	12346	10195	213	311	860
-11-	-	-8-	0,6	1,2	-11-	7,8	0,81	1728	180	12953	10195	306	222	1103
-11-	-0-	-0-	-0-	1,7	-11-	10,2	0,749	2448	180	11978	10195	169	240	713
-11-	-	-8-	-1-	1,5	980	12,5	1,039	2160	180	16620	15681	87	173	376
-11-	-0-	-0-	-0-	-11-	780	7,0	0,581	2160	180	9302	6293	373	310	1204
-11-	0,8	-1-		-11-	880	11,2	0,936	2160	180	14977	10195	369	192	1912
350	0,5	-0-	-1-	1,2	-11-	8,6	0,898	2016	210	14368	11895	253	234	989
300	0,5	8,0	0,6	1,5	-11-	8,6	0,716	2160	180	11456	10195	145	251	504
-11-	-0-	6,0	-1-	-11-	-11-	7,9	0,662	2160	180	10588	10195	67	272	157
200	-0-	10,0	0,4	1,5	880	7,3	0,605	960	80	9677	6797	346	132	1152

Variable parametres of FHS are:

- $\begin{array}{l} L \text{section lenght} \\ g_g \text{average fuel load} \\ \lambda_r \text{air fuel ratio} \\ T_{f^r} \text{mean flame temperature} \\ \varphi \text{air flow reduction coefficient} \\ w_{\text{wind}} \text{air flow velocity} \end{array}$

Conclusions ba	ised on	the per	formed p	arameter analysis for the FHS	<u>:</u>			
Note: In the follow all other inpu	ing analy ut param	/sis of eac eters of Fl	h characte HS retain c	ristic influence parameter, onstant!				
Influence of burn	t sectior	<u>ı length L</u>	<u>(m):</u>					
$L\uparrow \rightarrow G_{a}\uparrow \rightarrow \Delta \tau\uparrow \rightarrow Q_{r}\uparrow \rightarrow t\downarrow.$								
Results are shown in the following table.								
Ĩ				D (Ja) (Ja)				
	L	τ(°C)	$\Delta \tau$					
	250	271	218	1005				
	350	166	233	709				

Influence of av	Influence of average fuel load (vegetation cover) gg(kg/m ²):									
$g_{g} \uparrow \rightarrow G_{f} \uparrow \rightarrow$	$G_a \uparrow \to m_a$	$_{ir}$ =const, \rightarrow	$\Delta \tau \uparrow \rightarrow$	m _{fuel} =const -	→ t=con	$st \rightarrow P=0$	const			
	$g_{\rm o}(\rm kg/m^2)$	t(°C)	Δau	P(kW/m ²)						
	0,4	213	156	860						
	0,6	213	233	860						
	0,8	213	311	860						
Results are shown in the following table.										
Influence of relative air fuel ratio λ :										
$\lambda \uparrow \rightarrow G_a \uparrow -$	$\rightarrow \Delta \tau \uparrow \rightarrow m_{\rm f}$	$t_{tuel} \downarrow \longrightarrow t \downarrow$								
Results are sh	own in the fo	llowing tabl	le.							
	λ	t(°C)	$\Delta \tau$	P(kW/m ²)						
	1,2	306	222	1103						
	1,5	213	233	860						
	1.7	169	240	713						

Influence of mean flame temperature $T_i(K)$: $T_i \uparrow \to \mathbf{Q}_i \uparrow \to t \downarrow \to m_{air} \uparrow$ (because of higher air density for approximately $\rho_a(T_a/T) \to \Delta \tau \downarrow$.										
		<i>Т</i> _f (К)	t(°C)	Δau	P(kW/m ²)					
		780	373	310	1204	1				
		880	369	192	1912					
		980	87	173	376					
Influence of air flow reduction coefficient φ : $\varphi \uparrow \to m_{\text{airl}} \uparrow \to \Delta \tau \downarrow \to m_{\text{huel}} \uparrow \to t \uparrow$ (because $Q_t = \text{const.}$ Results are shown in the following table.										
		φ	t(°C)	Δau	<i>P</i> (kŴ/m²)					
		0,5	213	233	860					
		0,8	369	192	1912					

 $\mathsf{w}_{wind} \mid \rightarrow \mathsf{m}_{air} \mid \rightarrow \Delta \iota \downarrow \rightarrow \mathsf{m}_{fuel} \mid \rightarrow \iota \mid$

Results are shown in the following table.

w _{wind} (m/s)	<i>t</i> (°C)	Δau	P(kW/m²)
6	67	272	157
8	145	251	504
10	213	233	860

<u>Note:</u> In all analyzed cases, increase in mean air flow temperature at the place of the accident leads to increase in specific power of FHS at the place of the accident!

ABSORBED HEAT FLUX AND INJURIES	
We started from $q = 4000$ W/m ² which is enough for deadly injuries for less then 40 s	
Supposing there is 1,0 mm thick air layer between clothes and skin, skin temperature is 60 °C, we found out roughly, that absorbed heat flux is already 4000 W/m ² for 23 % covering with flame, at the place of the accident. In this calculation external clothe is characterisied as non heat protective, i.e. with emissitivity factor $\varepsilon = 0.8$.	s
Absorbed heat flux in the accident circumstances, roughly calculated, was deadly.	