Scilab Function

abinv - AB invariant subspace

Calling Sequence

[X,dims,F,U,k,Z]=abinv(Sys,alfa,beta,flag)

Parameters

Description

Output nulling subspace (maximal unobservable subspace) for Sys = linear system defined by a syslin list containing the matrices [A,B,C,D] of Sys. The vector dims=[dimR,dimVg,dimV,noc,nos] gives the dimensions of subspaces defined as columns of X according to partition given below. The dimV first columns of X i.e V=X(:,1:dimV), span the AB-invariant subspace of Sys i.e the unobservable subspace of (A+B*F,C+D*F). (dimV=nx iff C^(-1)(D)=X).

The dimR first columns of X i.e. R=X(:,1:dimR) spans the controllable part of Sys in V, (dimR<=dimV). (dimR=0 for a left invertible system). R is the maximal controllability subspace of Sys in kernel(C).

The dimVg first columns of X spans Vg=maximal AB-stabilizable subspace of Sys. (dimR<=dimVg<=dimV).

F is a decoupling feedback: for X=[V,X2] (X2=X(:,dimV+1:nx)) one has X2'*(A+B*F)*V=0 and (C+D*F)*V=0.

The zeros od Sys are given by : X0=X(:,dimR+1:dimV); spec(X0'*(A+B*F)*X0) i.e. there are dimV-dimR closed-loop fixed modes.

If the optional parameter alfa is given as input, the dimR controllable modes of (A+BF) in V are set to alfa (or to [alfa(1), alfa(2), ...]. (alfa can be a vector (real or complex pairs) or a (real) number). Default value alfa=-1.

If the optional real parameter beta is given as input, the noc-dimV controllable modes of (A+BF) "outside" V are set to beta (or [beta(1),beta(2),...]). Default value beta=-1.

In the X,U bases, the matrices [X'*(A+B*F)*X,X'*B*U;(C+D*F)*X,D*U] are displayed as follows:


[A11,*,*,*,*,*]  [B11 * ]
[0,A22,*,*,*,*]  [0   * ]
[0,0,A33,*,*,*]  [0   * ]
[0,0,0,A44,*,*]  [0  B42]
[0,0,0,0,A55,*]  [0   0 ]
[0,0,0,0,0,A66]  [0   0 ]

[0,0,0,*,*,*]    [0  D2]
   

where the X-partitioning is defined by dims and the U-partitioning is defined by k.

A11 is (dimR x dimR) and has its eigenvalues set to alfa(i)'s. The pair (A11,B11) is controllable and B11 has nu-k columns. A22 is a stable (dimVg-dimR x dimVg-dimR) matrix. A33 is an unstable (dimV-dimVg x dimV-dimVg) matrix (see st_ility).

A44 is (noc-dimV x noc-dimV) and has its eigenvalues set to beta(i)'s. The pair (A44,B42) is controllable. A55 is a stable (nos-noc x nos-noc) matrix. A66 is an unstable (nx-nos x nx-nos) matrix (see st_ility).

Z is a column compression of Sys and k is the normal rank of Sys i.e Sys*Z is a column-compressed linear system. k is the column dimensions of B42,B52,B62 and D2. [B42;B52;B62;D2] is full column rank and has rank k.

If flag='st' is given, a five blocks partition of the matrices is returned and dims has four components. If flag='pp' is given a four blocks partition is returned. In case flag='ge' one has dims=[dimR,dimVg,dimV,dimV+nc2,dimV+ns2] where nc2 (resp. ns2) is the dimension of the controllable (resp. stabilizable) pair (A44,B42) (resp. ([A44,*;0,A55],[B42;0])). In case flag='st' one has dims=[dimR,dimVg,dimVg+nc,dimVg+ns] and in case flag='pp' one has dims=[dimR,dimR+nc,dimR+ns]. nc (resp. ns) is here the dimension of the controllable (resp. stabilizable) subspace of the blocks 3 to 6 (resp. 2 to 6).

This function can be used for the (exact) disturbance decoupling problem.

DDPS:
   Find u=Fx+Rd=[F,R]*[x;d] which rejects Q*d and stabilizes the plant:

    xdot = Ax+Bu+Qd
       y = Cx+Du+Td

DDPS has a solution if Im(Q) is included in Vg + Im(B) and stabilizability
assumption is satisfied. 
Let G=(X(:,dimVg+1:$))'= left annihilator of Vg i.e. G*Vg=0;
B2=G*B; Q2=G*Q; DDPS solvable iff [B2;D]*R + [Q2;T] =0 has a solution.
The pair F,R  is the solution  (with F=output of abinv).
Im(Q2) is in Im(B2) means row-compression of B2=>row-compression of Q2
Then C*[(sI-A-B*F)^(-1)+D]*(Q+B*R) =0   (<=>G*(Q+B*R)=0)
   

Examples

See Also

Author