frep2tf - transfer function realization from frequency response
Frequency response to transfer function conversion. The order of h is a priori given in dg which must be provided. The following linear system is solved in the least square sense.
weight(k)*(n( phi_k) - d(phi_k)*rep_k)=0, k=1,..,n
where phi_k= 2*%i*%pi*frq when dom='c' and phi_k=exp(2*%i*%pi*dom*frq if not. If the weight vector is not given a default penalization is used (when dom='c').
A stable and minimum phase system can be obtained by using function factors.
s=poly(0,'s'); h=syslin('c',(s-1)/(s^3+5*s+20)) frq=0:0.05:3;repf=repfreq(h,frq); clean(frep2tf(frq,repf,3)) Sys=ssrand(1,1,10); frq=logspace(-3,2,200); [frq,rep]=repfreq(Sys,frq); //Frequency response of Sys [Sys2,err]=frep2tf(frq,rep,10);Sys2=clean(Sys2)//Sys2 obtained from freq. resp of Sys [frq,rep2]=repfreq(Sys2,frq); //Frequency response of Sys2 xbasc();bode(frq,[rep;rep2]) //Responses of Sys and Sys2 [sort(trzeros(Sys)),sort(roots(Sys2('num')))] //zeros [sort(spec(Sys('A'))),sort(roots(Sys2('den')))] //poles dom=1/1000; // Sampling time z=poly(0,'z'); h=syslin(dom,(z^2+0.5)/(z^3+0.1*z^2-0.5*z+0.08)) frq=(0:0.01:0.5)/dom;repf=repfreq(h,frq); [Sys2,err]=frep2tf(frq,repf,3,dom); [frq,rep2]=repfreq(Sys2,frq); //Frequency response of Sys2 xbasc();plot2d1("onn",frq',abs([repf;rep2])');